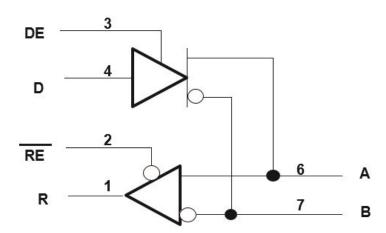


Features

- Exceeds the M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Low-Voltage Differential $30-\Omega$ to $55-\Omega$ Line Drivers and Receivers for Signaling Rates, up to 200 Mbps
- Type-2 Receivers Provide an Offset (80 mV) Threshold to Detect Open-Circuit and Idle-Bus
- Conditions:
 - -1-V to 3.4-V Common-Mode Voltage Range
- · Allows Data Transfer with 2 V of Ground Noise
- Bus Pins High Impedance when Disabled or V_{CC} ≤ 1.5 V
- Bus-Pin Protection: ±8-kV HBM Model
- -40°C to 85°C Operation Temperature Range

Applications


- Backplane Multipoint Data/ Clock Transmission
- Cellular Base Stations
- Network Switches and Routers
- Industrial Control
- Communication Infrastructure

Description

The TPT9H221A is a 3.3-V Multipoint-Low-Voltage Differential (M-LVDS) line driver and receiver, which can operate at signaling rates up to 200 Mbps. Driver outputs and receiver inputs are protected against ± 8 -kV ESD strikes without latch-up. The driver output has been designed to support multipoint buses presenting loads as low as 30 Ω , and incorporates controlled transition times to allow for stubs off of the backbone transmission line.

The TPT9H221A is a Type-2 receiver that detects the bus state with a differential input of 50 mV over a common-mode voltage range from −1 V to 3.4 V. Type-2 receiver includes an offset threshold to provide a known output state under open-circuit fail-safe, idle-bus fail-safe. The device is characterized for operation from −40°C to 85°C. The device is available as a half-duplex in an 8-pin SOP package.

Typical Application Circuits

Table of Contents

Applications	
Description	1
Typical Application Circuits	1
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	6
Thermal Information	6
Electrical Characteristics	7
Test Circuits, Configurations and Waveforms	. 11
Detailed Description	. 16
Overview	.16
Tape and Reel Information	. 17
Package Outline Dimensions	18
SOP8	. 18
Order Information	. 19
IMPORTANT NOTICE AND DISCLAIMER	. 20

Revision History

Date	Revision	Notes
2024-03-21	Rev. A. 0	Released version

www.3peak.com 3 / 20 CA20230901A0

Pin Configuration and Functions

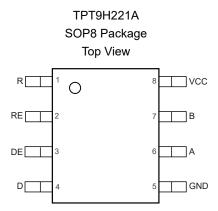


Table 1. Pin Functions: TPT9H221A

Pin No.	Name	I/O	Description
1	R	Digital output	Receiver Output
2	/RE	Digital input	Receiver Output Enable
3	DE	Digital input	Driver Output Enable
4	D	Digital input	Driver Input
5	GND	Ground	Ground
6	Α	Bus input	Noninverting Receiver Input
7	В	Bus input	Inverting Receiver Input
8	Vcc	Power	Power Supply

Device Function Tables

Table 2. Truth Table Abbreviations

Abbreviation	Description
Н	High level
L	Low level
X	Don't care
I	Indeterminate
Z	High impedance (off)
NC	Disconnected

www.3peak.com 4 / 20 CA20230901A0

Table 3. Driver

Input	Enable	Outputs		
D	DE	A	В	
L	Н	L	Н	
Н	Н	н	L	
OPEN	Н	L	Н	
X	OPEN	Z	Z	
X	L	z	Z	

- (1) H = high level
- (2) L = low level
- (3) Z = high impedance
- (4) X = Don't care
- (5) ? = indeterminate

Table 4. Type-2 Receiver

Inputs	Output	
V _{ID} = V _A - V _B	RE	R
V _{ID} ≥ 150 mV	L	Н
50 mV < V _{ID} < 150 mV	L	?
V _{ID} ≤ 50 mV	L	L
X	Н	Z
X	Open	Z
Open Circuit	L	L

Table 5. Type-2 Receiver Input Threshold Test Voltages

Applied Voltage		Differential Input Voltages	Common Mode Input Voltage	Receiver Output (1)
VIA	V _{IB}	V _{ID}	V _{IC}	
2.400	0.000	2.400	1.200	Н
0.000	2.400	-2.400	1.200	L
3.800	3.650	0.150	3.725	Н
3.800	3.750	0.050	3.775	L
-1.250	-1.400	0.150	-1.325	Н
-1.350	-1.400	0.050	-1.375	L

⁽¹⁾ H = high level, L = low level, output state assumes receiver is enabled (RE = L).

www.3peak.com 5 / 20 CA20230901A0

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
	V _{CC} to GND	-0.5	4	V
	Voltage at Logic pin: D, DE, /RE, R ⁽²⁾	-0.3	4	\ \
	Voltage at Bus pin: A, B	-1.8	4	V
	Operating Temeprature Range	-40	85	°C
T _{stg}	Storage Temperature Range	-65	150	ů
TJ	Maximum Junction Temperature		150	°C
	Lead Temperature (Soldering, 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

	Parameter	Condition	Value	Unit
НВМ,	ANSI/ESDA/JEDEC JS-001	Bus Pin	8	kV
		All Pin Except Bus Pin	4	kV
CDM	ANSI/ESDA/JEDEC JS-002	All Pin	1	kV

Recommended Operating Conditions

	Parameter	Min	Тур	Max	Unit
Vcc	Supply Voltage	3	3.3	3.6	V
V _{IH}	High-Level Input Voltage	2		VCC	V
V _{IL}	Low-Level Input Voltage	GND		0.8	V
	Voltage at any Bus Terminal V _A ,V _B	-1.4		3.8	V
V _{ID}	Magnitude of Differential Input Voltage	0.05		VCC	V
T _A	Operating Temperature Range	-40		85	°C

Thermal Information

Package Type	θја	θυς	Unit
SOP8	130	52	°C/W

⁽¹⁾ θ_{JA} = 130°C/W is typical value of SOP8 provided by package assembly house.

www.3peak.com 6 / 20 CA20230901A0

⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

Electrical Characteristics

All test conditions: V_{CC} = 3.0 V ~ 3.6 V, T_A = -40 ~ +85°C, unless otherwise noted.

	Parameter	Conditions	Min	Тур	Max	Unit
Power S	upply					
Vcc	Supply Voltage		3		3.6	V
	Driver only	RE and DE at V_{CC} , R_L = 50 Ω , All others open		13	22	mA
lcc Supply	Both Disabled	RE at V_{CC} , DE at 0 V, R_L = No Load, All others open		2	4	mA
Supply Current	Both Enabled	RE at 0 V, DE at V _{CC} , R _L = 50 Ω , All others open		15	24	mA
	Receiver only	RE at 0 V, DE at 0 V, R _L = 50 Ω , All others open		4	13	mA
		V _A = 3.8 V, V _B = 1.2 V,	0		32	μA
I_{Am}	Receiver or Transceiver with Driver Disabled Input Current	V _A = 0 V or 2.4 V, V _B = 1.2 V	-20		20	μA
	Disabled input durient	V _A = -1.4 V, V _B = 1.2 V	-32		0	μA
	Receiver or Transceiver with Driver Disabled Input Current	V _B = 3.8 V, V _A = 1.2 V	0		32	μA
lΒ		V _B = 0 V or 2.4 V, V _A = 1.2 V	-20		20	μA
		V _B = -1.4 V, V _A = 1.2 V	-32		0	μΑ
I _{AB}	Receiver or Transceiver with Driver Disabled Differential Input Current (IA— IB)	V _A = V _B , 1.4 ≤ V _A ≤ 3.8 V	-4		4	μА
	Receiver or Transceiver Power-off Input Current	$V_A = 3.8 \text{ V}, V_B = 1.2 \text{ V},$ $0 \text{ V} \leq V_{CC} \leq 1.5 \text{ V}$	0		32	μA
I _{A (OFF)}		$V_A = 0 \text{ V or } 2.4 \text{ V}, V_B = 1.2 \text{ V},$ $0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-20		20	μA
		$V_A = -1.4 \text{ V}, V_B = 1.2 \text{ V},$ $0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-32		0	μA
		$V_B = 3.8 \text{ V}, V_A = 1.2 \text{ V},$ $0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	0		32	μA
I _{B (OFF)}	Receiver or Transceiver Power-off Input Current	$V_B = 0 \text{ V or } 2.4 \text{ V}, V_A = 1.2 \text{ V}, $ $0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-20		20	μA
		$V_B = -1.4 \text{ V}, V_A = 1.2 \text{ V},$ $0 \text{ V} \le V_{CC} \le 1.5 \text{ V}$	-32		0	μA
lances:	Receiver Input or Transceiver	$V_A = V_B, \ 0 \ V \le V_{CC} \le 1.5 \ V,$	-4		4	^
I _{AB(OFF)}	Power-off Differential Input Current (I _A – I _B)	-1.4 ≤ V _A ≤ 3.8 V	-4		4	μA
Driver E	lectrical Characteristics					

www.3peak.com 7 / 20 CA20230901A0

Parameter		Conditions	Min	Тур	Max	Unit
V _{AB}	Differential Output Voltage Magnitude		480		650	mV
$\Delta V_{AB} $	Change in Differential Output Voltage Magnitude between Logic States	See Figure 1	-50		50	mV
Vos(ss)	Steady-state Common-Mode Output Voltage		0.8		1.2	V
$\Delta V_{\text{OS(SS)}}$	Change in Steady-State Common- Mode Output Voltage Between Logic States	See Figure 2	-50		50	mV
V _{OS(PP)}	Peak-to-peak Common-Mode Output Voltage				150	mV
V _{A(OC)}	Maximum Steady-State Open-Circuit Output Voltage	Saa Figura 6	0		VCC	V
$V_{B(OC)}$	Maximum Steady-State Open-Circuit Output Voltage	See Figure 6	0		VCC	٧
$V_{P(H)}$	Voltage Overshoot, Low-to-High- Level Output	0 5			1.2 V _{SS}	٧
$V_{P(L)}$	Voltage Overshoot, High-to-Low- Level Output	See Figure 4	-0.2 V _{SS}			V
I _{IH}	High-Level Input Current (D, DE)	V _{IH} = 2 V	0		10	μA
I _{IL}	Low-Level Input Current (D, DE)	V _{IL} = 0.8 V	0		10	μA
los	Differential Short-Circuit Output Current Magnitude	See Figure 3			75	mA
l _{OZ}	High-Impedance State Output Current (driver only)	$-1.4 \text{ V} \le \text{V}_{\text{A}} \text{ or V}_{\text{B}} \le 3.8 \text{ V},$ Other output = 1.2 V	-32		32	μΑ
Driver Sv	witching Characteristics					
t _{PLH}	Propagation Delay Time, Low-To- High-Level Output ⁽¹⁾			2.8		ns
t _{PHL}	Propagation Delay Time, High-To- Low-Level Output ⁽¹⁾			3.2		ns
t _r	Differential Output Signal Rise Time	See Figure 4		1.6		ns
t _f	Differential Output Signal Fall Time (1)			1.8		ns
t _{sk(p)}	Pulse Skew (t _{PHL} - t _{PLH}) ⁽¹⁾			433		ps
t _{jit(per)}	Period Jitter, rms (1 standard deviation) ⁽¹⁾	100 MHz clock input		1		ps

	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHZ}	Disable Time, High-Level-To-High- Impedance Output ⁽¹⁾			4.5		ns
t _{PLZ}	Disable Time, Low-Level-To-High- Impedance Output ⁽¹⁾	Soo Eiguro E		3.2		ns
t _{PZH}	Enable Time, High-Impedance-To- High-Level Output ⁽¹⁾	See Figure 5		3.2		ns
t _{PZL}	Enable Time, High-Impedance-To- Low-Level Output ⁽¹⁾			5		ns
Receiver	Electrical Characteristics				_	
V _{IT+}	Positive-Going Differential Input Voltage Threshold				150	mV
V _{IT} -	Negative-Going Differential Input Voltage Threshold	See Figure 8 and Table 1 and Table 2	50			mV
V _{HYS}	Differential Input Voltage Hysteresis, $(V_{IT+}-V_{IT})^{(1)}$			0		mV
V _{OH}	High-Level Output Voltage	I _{OH} = -8 mA	2.4			V
V_{OL}	Low-Level Output Voltage	I _{OL} = 8 mA			0.4	V
I _{IH}	High-Level Input Current (RE)	V _{IH} = 2 V	-10		0	μA
I _{IL}	Low-Level Input Current (RE)	V _{IL} = 0.8 V	-10		0	μA
C _A or C _B	Input Capacitance (1)	V _I = 0.4 sin(30E6πt) + 0.5 V, Other input at 1.2 V		7		pF
С _{АВ}	Differential Input Capacitance (1)	V _{AB} = 0.4 sin(30E6πt) V		7		pF
C _{A/B}	Input Capacitance Balance, (C _A /C _B) (1)		0.99		1.01	
Receiver	Switching Characteristics					
t _{pLH}	Propagation Delay Time, Low-to- High-Level Output ⁽¹⁾		4	6	8	ns
t _{pHL}	Propagation Delay Time, High-to- Low-Level Output ⁽¹⁾	C _L = 15 pF, See Figure 9	4	6	8	ns
t _r	Output Signal Rise Time	· · · · · · · · · · · · · · · · · ·		0.9	2.3	ns
t _f	Output Signal Fall Time]		0.8	2.3	ns
t _{sk(p)}	Pulse Skew (t _{phl} - t _{plh})			200		ps
t _{jit(per)}	Period Jitter, rms (1 standard deviation) (1)	100 MHz clock input		1		ps

www.3peak.com 9 / 20 CA20230901A0

Parameter		Conditions		Тур	Max	Unit
t _{pHZ}	Disable Time, High-Level-to-High- Impedance Output ⁽¹⁾			4.5		ns
t_{pLZ}	Disable Time, Low-Level-to-High- Impedance Output ⁽¹⁾	See Figure 10		3.5		ns
t _{pZH}	Enable Time, High-Impedance-to- High-Level Output ⁽¹⁾			7.5		ns
t_{pZL}	Enable Time, High-Impedance-to- Low-Level Output ⁽¹⁾			3.5		ns

⁽¹⁾ Spec data is provided by lab bench test, NOT test in production.

www.3peak.com 10 / 20 CA20230901A0

Test Circuits, Configurations and Waveforms

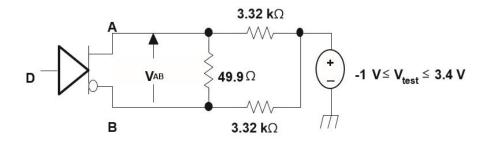


Figure 1. Differential Output Voltage Test Circuit

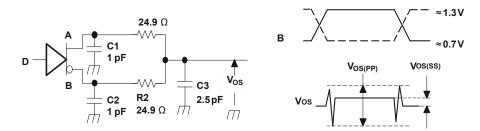


Figure 2. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

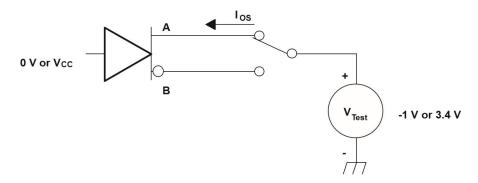


Figure 3. Driver Short-Circuit Test Circuit

www.3peak.com 11 / 20 CA20230901A0

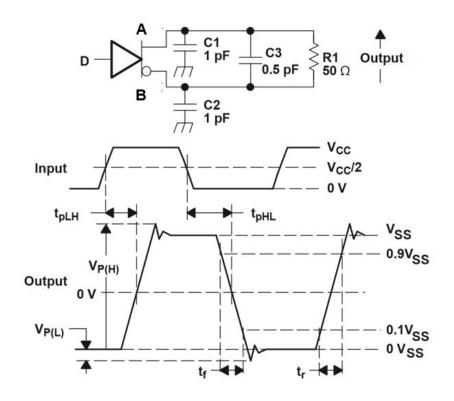


Figure 4. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal



Figure 5. Driver Enable and Disable Time Circuit and Definitions

www.3peak.com 12 / 20 CA20230901A0

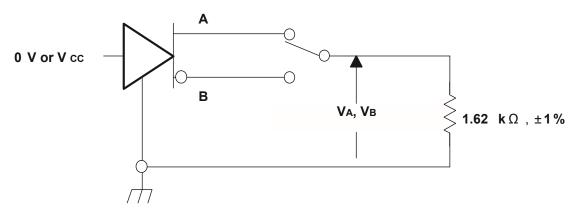


Figure 6. Maximum Steady State Output Voltage

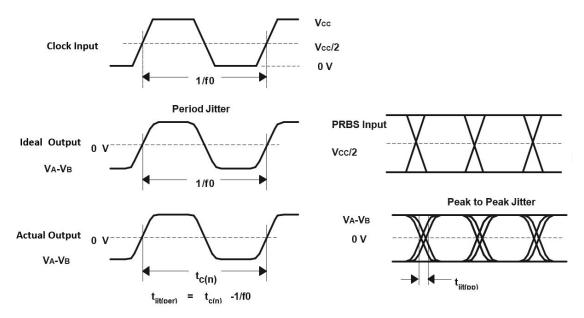


Figure 7. Driver Jitter Measurement Waveforms

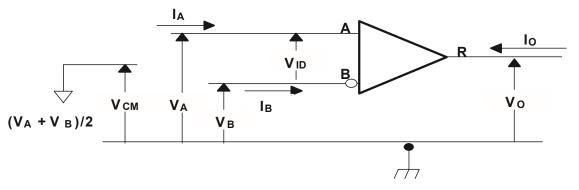


Figure 8. Receiver Voltage and Current Definitions

www.3peak.com 13 / 20 CA20230901A0

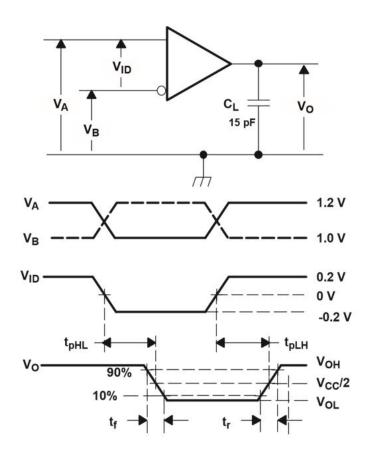


Figure 9. Receiver Timing Test Circuit and Waveforms

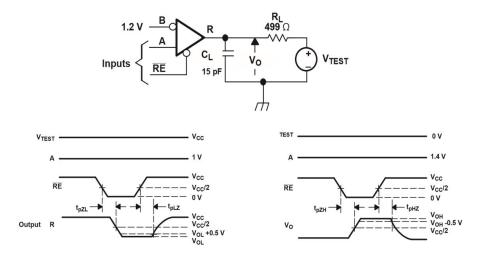


Figure 10. Receiver Timing Test Circuit and Waveforms

www.3peak.com 14 / 20 CA20230901A0

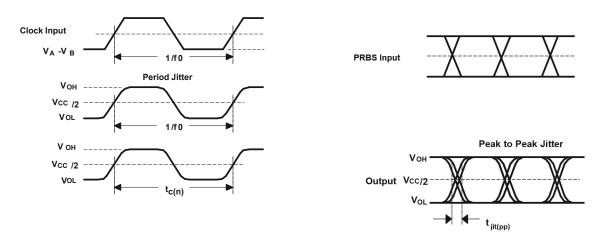
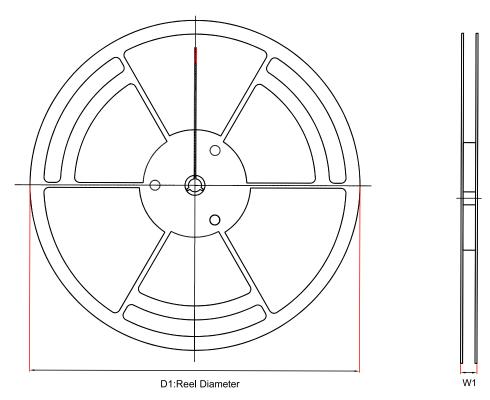


Figure 11. Receiver Jitter Measurement Waveforms

www.3peak.com 15 / 20 CA20230901A0

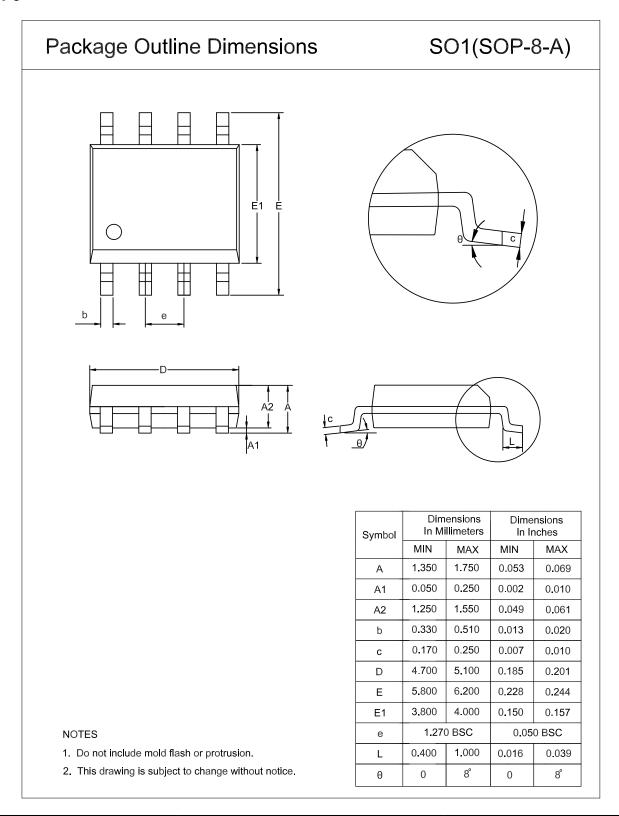
Detailed Description


Overview

The TPT9H221A is a 3.3-V Multipoint-Low-Voltage Differential (M-LVDS) line driver and receiver, which can operate at signaling rates up to 200 Mbps. Driver outputs and receiver inputs are protected against ± 8 -kV ESD strikes without latch-up. The driver output has been designed to support multipoint buses presenting loads as low as 30 Ω , and incorporates controlled transition times to allow for stubs off of the backbone transmission line.

www.3peak.com 16 / 20 CA20230901A0

Tape and Reel Information


Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPT9H221A- SO1R-S	SOP8	330.0	17.6	6.5	5.4	2.0	8.0	12.0	Q1

www.3peak.com 17 / 20 CA20230901A0

Package Outline Dimensions

SOP8

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT9H221A-SO1R-S	−40 to 85°C	SOP8	H221A	1	Tape and Reel, 4000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 19 / 20 CA20230901A0

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 20 / 20 CA20230901A0