

Features

- I²C-Bus to 16-Bit GPIO Expander
- Operating Power Supply Voltage from 1.65 V to 5.5 V
- Low Standby Current Consumption:
 - 3.0 μA (typical at 5 V V_{CC})
 - 1.5 μ A (typical at 3.3 V V_{CC})
- 400-kHz Fast-Mode I²C-Bus
- 5-V Tolerant I/Os
- Open-Drain Active Low Interrupt Output (INT)
- Configurable Slave Address with 3 Address Pins
- Internal Power-on Reset
- Power-up with all Channels Configured as Inputs with Weak Pull-up Resistors
- Latch-up Performance Exceeds 200 mA per JESD 78
- ESD Protection Exceeds JESD 22
 - 4000-V Human Body Model
 - 1500-V Charged-Device Model

Applications

- Servers/Storages
- Routers (Telecom Switching Equipment)
- Personal Computers

Description

The TPT29555A is a 16-bit GPIO expander with interruption and weak pull-up resistors for l^2 C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V, allowing the TPT29555A to interconnect with 1.8-V microcontrollers.

The TPT29555A contains the register set of two pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers. The open-drain interrupt (\overline{INT}) output is changeable when any input state changes from its related register state and is used to indicate the system master that an input state has changed. \overline{INT} can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the TPT29555A can remain a simple slave device. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I^2C -bus address and allow up to eight devices to share the same I^2C -bus.

TPT29555A is available in TSSOP24 and QFN24 packages and is characterized from -40° C to $+125^{\circ}$ C.

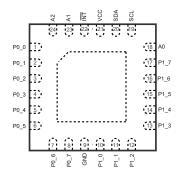
Subsyste (e.g., Temp INT V_{CC} (5 V) Subsystem 2 24 Ω 10 kΩ ≷ 10 kΩ ≷ 10 kΩ ≷ 10 kΩ (e.g., Coun Vcc Vcc RESET 22 1 P00 4 SC SCL Master 23 P01 SD SDA P02 INT INT PO GND ENABLE P04 P05 TPT29555A Vcc 10 Controlled Switch (e.g., CBT Device) P07 A2 P10 P11 -14 ALARM A1 Keypad P13 16 Subsystem 3 AO (e.g., Alarm) 15 18 19 GND P17 ħ

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	7
Thermal Information	7
Electrical Characteristics	8
Electrical Characteristics (Continued)	9
I ² C Interface Timing Requirements ⁽¹⁾	
Switching Characteristics	11
Parameter Measurement Waveforms	11
Typical Performance Characteristics	
Detailed Description	13
Overview	13
Functional Block Diagram	13
Feature Description	13
Device Address	14
Application and Implementation	17
Application Information	
Typical Application	17
Layout	
Layout Guideline	18
Layout Example	18
Tape and Reel Information	20
Package Outline Dimensions	21
TSSOP24	21
QFN4X4-24	22
Order Information	
IMPORTANT NOTICE AND DISCLAIMER	24

Revision History


Date	Revision	Notes		
2023-10-20	Rev.A.0	Released version		
2024-01-31	Rev.A.1	dated Tape and Reel Information		
2024-07-03	Rev.A.2	dated T _A as 105°C		
2024-10-21	Rev.A.3	Updated the unit of V _{IL} from mV to V in Recommended Conditions Updated T _A as -40 ~ 125 °C, V _{CC} = 1.65 V ~ 3.6 V Updated T _A as -40 ~ 105 °C, V _{CC} = 4.5 V ~ 5.5 V Updated T _J as 150°C		

Pin Configuration and Functions

TPT29555A TSSOP24 Package Top View							
	1 24	VCC					
A1	2 O 23	SDA					
A2	3 22	SCL					
P0_0	4 21	A0					
P0_1	5 20	P1_7					
P0_2	6 19	P1_6					
P0_3	7 18	P1_5					
P0_4	8 17	P1_4					
P0_5	9 16	P1_3					
P0_6	10 15	P1_2					
P0_7	11 14	P1_1					
GND	12 13	P1_0					

TPT29555A					
QFN4X4-24 Package					
Top View					

Table 1. Pin Functions: TPT29555A

Р	in			
TSSOP24	QFN4X4-24	Name	I/O	Description
21	18	A0	Input	Address input 0. Connect directly to VCC or ground
2	23	A1	Input	Address input 1. Connect directly to VCC or ground
3	24	A2	Input	Address input 2. Connect directly to VCC or ground
12	9	GND	GND	Ground
1	22	INT	Output	Interrupt output. Connect to VCC through a pull-up resistor
4	1	P0_0	I/O	P-port I/O. Push-pull design structure. At power on, P0_0 is configured as an input
5	2	P0_1	I/O	P-port I/O. Push-pull design structure. At power on, P0_1 is configured as an input
6	3	P0_2	I/O	P-port I/O. Push-pull design structure. At power on, P0_2 is configured as an input
7	4	P0_3	I/O	P-port I/O. Push-pull design structure. At power on, P0_3 is configured as an input
8	5	P0_4	I/O	P-port I/O. Push-pull design structure. At power on, P0_4 is configured as an input
9	6	P0_5	I/O	P-port I/O. Push-pull design structure. At power on, P0_5 is configured as an input
10	7	P0_6	I/O	P-port I/O. Push-pull design structure. At power on, P0_6 is configured as an input
11	8	P0_7	I/O	P-port I/O. Push-pull design structure. At power on, P0_7 is configured as an input

Р	in	NI		Description
TSSOP24	QFN4X4-24	Name	I/O	Description
13	10	P1_0	I/O	P-port I/O. Push-pull design structure. At power on, P1_0 is configured as an input
14	11	P1_1	I/O	P-port I/O. Push-pull design structure. At power on, P1_1 is configured as an input
15	12	P1_2	I/O	P-port I/O. Push-pull design structure. At power on, P1_2 is configured as an input
16	13	P1_3	I/O	P-port I/O. Push-pull design structure. At power on, P1_3 is configured as an input
17	14	P1_4	I/O	P-port I/O. Push-pull design structure. At power on, P1_4 is configured as an input
18	15	P1_5	I/O	P-port I/O. Push-pull design structure. At power on, P1_5 is configured as an input
19	16	P1_6	I/O	P-port I/O. Push-pull design structure. At power on, P1_6 is configured as an input
20	17	P1_7	I/O	P-port I/O. Push-pull design structure. At power on, P1_7 is configured as an input
22	19	SCL	Input	Serial clock bus. Connect to VCC through a pull-up resistor
23	20	SDA	Input	Serial data bus. Connect to VCC through a pull-up resistor
24	21	VCC	Supply	Supply voltage
		E-pad	-	Thermal pad, should connect to GND on board

Specifications

Absolute Maximum Ratings ⁽¹⁾

	Parameter	Min	Мах	Unit
Vcc	Supply Voltage	-0.5	6	V
VI	Input Voltage	-0.5	6	V
Vo	Output Voltage	-0.5	6	V
I _{IK}	Input Clamp Current, V _I < 0		-20	mA
loк	Output Clamp Current, V _O < 0		-20	mA
liok	Input-Output Clamp Current, $V_0 < 0$ or $V_0 > V_{CC}$		±20	mA
IOL	Continuous Output Low Current, $V_0 = 0$ to V_{CC}		50	mA
I _{OH}	Continuous Output High Current, $V_0 = 0$ to V_{CC}		-50	mA
	Continuous Current through GND		-250	mA
Icc	Continuous Current through V _{CC}		160	mA
TJ	Maximum Junction Temperature		150	°C
T _{stg}	Storage Temperature	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) This data was taken with the JEDEC low effective thermal conductivity test board.

(3) This data was taken with the JEDEC standard multilayer test boards.

ESD, Electrostatic Discharge Protection

Parameter		Parameter Condition		Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over-operating free-air temperature range (unless otherwise noted).

	Parameter			Max	Unit
Vcc	V _{CC} Supply Voltage			5.5	V
	V _{IH} High-Level Input Voltage	SCL, SDA	0.7 × V _{CC}	Vcc	V
VIH		A2 ~ A0, P0_7 ~ P0_0, P1_7 ~ P1_0	0.7 × Vcc	5.5	V
V _{IL} Low-Level Input Voltag		SCL, SDA	-0.5	0.3 × V _{CC}	V
	Low-Level input voltage	A2 ~ A0, P0_7 ~ P0_0, P1_7 ~ P1_0	-0.5	0.3 × V _{CC}	V
Іон	High-Level Output Current	P0_7 ~ P0_0, P1_7 ~ P1_0		-10	mA
		P0_7 ~ P0_0, P1_7 ~ P1_0		25	mA
IOL	Low-Level Output Current	ĪNT, SDA		6	mA
-		V _{CC} = 1.65 ~ 3.6 V	-40	125	°C
TA	Operating Temperature Range	$V_{CC} = 4.5 \sim 5.5 V$	-40	105	°C

(1) The algebraic convention, in which the least positive (most negative) limit is designated as the minimum, is used in this datasheet.

Thermal Information

Package Type	θ _{JA}	θյς	Unit
TSSOP24	68	21	°C/W
QFN24	60	25	°C/W

Electrical Characteristics

All test conditions: V_{CC} = 1.65 V ~ 5.5 V, T_A = -40 ~ +105°C, unless otherwise noted.

	Parameter	Conditions	Min	Тур	Мах	Unit
Input El	ectrical Specifications					
M	Power-on Reset Voltage , V_{CC} Rising	VI = Vcc or GND; Io = 0 mA		1.25	1.45	v
V _{POR}	Power-on Reset Voltage , V_{CC} Falling	$V_I = V_{CC}$ or GND; $I_0 = 0$ mA	0.8	1.2		v
	Low-Level Output Current, SDA	V_{OL} = 0.4 V; V_{CC} = 1.65 V to 5.5 V	3			mA
	Low-Level Output Current, INT	V_{OL} = 0.4 V; V_{CC} = 1.65 V to 5.5 V	3			mA
		V _{OL} = 0.5 V; V _{CC} = 1.65 V	8			mA
		V_{OL} = 0.5 V; V_{CC} = 2.3 V	8			mA
	Low-Level Output Current, P port	V _{OL} = 0.5 V; V _{CC} = 3.0 V	8			mA
lol		V_{OL} = 0.5 V; V_{CC} = 4.5 V	8			mA
	Low-Level Output Current, P port	V _{OL} = 0.7 V; V _{CC} = 1.65 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 2.3 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 3.0 V	10			mA
		V _{OL} = 0.7 V; V _{CC} = 4.5 V	10			mA
		Iон = −8 mA; V _{CC} = 1.65 V	1.2			V
	High Lovel Output Veltage Direct	I _{OH} = −8 mA; V _{CC} = 2.3 V	1.8			V
	High-Level Output Voltage, P port	I _{OH} = −8 mA; V _{CC} = 3.0 V	2.6			V
\ <i>\</i>		Iон = −8 mA; V _{CC} = 4.75 V	4.1			V
Vон		I _{OH} = −10 mA; V _{CC} = 1.65 V	1.0			V
	High Lovel Output Voltage Direct	I _{OH} = −10 mA; V _{CC} = 2.3 V	1.7			V
	High-Level Output Voltage, P port	I _{OH} = −10 mA; V _{CC} = 3.0 V	2.5			V
		I_{OH} = -10 mA; V_{CC} = 4.75 V	4.0			V
lı	Input Current: A0, A1, A2;	V_{CC} = 1.65 V to 5.5 V, V_{I} = V_{CC} or GND	-1		1	μA
	Input Current: SCL, SDA	V_{CC} = 1.65 V to 5.5 V, V _I = V _{CC} or GND	-1		1	μA
IIH	High-Level Input Current: P port	$V_{I} = V_{CC}; V_{CC} = 1.65 \text{ V to } 5.5 \text{ V}$			1	μA
IIL	Low-Level Input Current: P port	V _I = GND; V _{CC} = 1.65 V to 5.5 V	-100			μA

(1) 100% tested at $T_A = 25^{\circ}C$.

(2) Parameters are provided by lab bench tests and design simulation. Not tested in production.

Electrical Characteristics (Continued)

All test conditions: V_{CC} = 1.65 V ~ 5.5 V, T_A = -40 ~ +105°C, unless otherwise noted.

Parameter		Conditions	Conditions			Мах	Unit
			V _{CC} = 5.5 V		16	40	μA
		Active mode, IO = 0 mA; I/O	V _{CC} = 3.6 V		9	30	μA
		= inputs; fSCL = 400 kHz	Vcc = 2.7 V		6.2	19	μA
I _{cc} S			V _{CC} = 1.95 V		4.2	11	μA
			V _{CC} = 5.5 V		0.90	7	mA
	Supply Current	Standby Mode, input low, IO = 0 mA; I/O = inputs; fS _{SCL} = 0 kHz	V _{CC} = 3.6 V		0.48	5	mA
			V _{CC} = 2.7 V		0.43	4.5	mA
			V _{CC} = 1.95 V		0.31	3.5	mA
		Standby Mode, input high, IO	V _{CC} = 5.5 V		2.64	15	μA
			V _{CC} = 3.6 V		1.55	13	μA
		= 0 mA; I/O = inputs; f _{SCL} = 0 kHz	V _{CC} = 2.7 V		1.07	9.5	μA
			V _{CC} = 1.95 V		0.68	6.5	μA
Ci	Input Capacitance	$V_{I} = V_{CC}$ or GND; $V_{CC} = 1.65$ V	/ to 5.5 V ⁽²⁾		3		pF
<u>_</u>		$V_{I/O} = V_{CC} \text{ or GND}; V_D = 1.65 \text{ V}$	V to 5.5 V ⁽²⁾		3		pF
C _{io} Input/C	Input/Output Capacitance	$V_{I/O} = V_{CC}$ or GND; $V_{CC} = 1.65$	$V_{\rm I/O}$ = V_{\rm CC} or GND; V_{\rm CC} = 1.65 V to 5.5 V $^{(2)}$				pF

(1) 100% tested at T_A = 25°C.

(2) Parameters are provided by lab bench tests and design simulation. Not tested in production.

I²C Interface Timing Requirements ⁽¹⁾

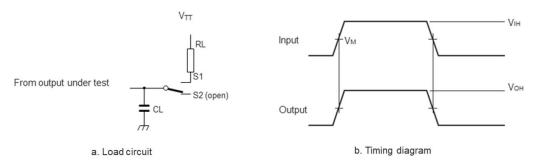
Over recommended operating free-air temperature range, unless otherwise noted.

	Description	O an ditions	Standa	ard Mod	Fast	Mode	11
	Description	Conditions	Min	Max	Min	Max	Unit
fscl	I ² C clock frequency		0	100	0	400	kHz
tsch	I ² C clock high time		4		0.6		μs
tscl	I ² C clock low time		4.7		1.3		μs
tsp	I ² C spike time			50		50	ns
tsds	I ² C serial-data setup time		250		100		ns
tsdh	I ² C serial-data hold time		0		0		ns
ticr ⁽²⁾	I ² C input rise time			1000	20	300	ns
Ticf ⁽³⁾	I ² C input fall time			300	20 × (Vcc/ 5.5 V)	300	ns
tocf ⁽³⁾	I ² C output fall time	10-pF to 400-pF bus		300	20 × (V _{cc} / 5.5 V)	300	ns
tbuf	I ² C bus free time between stop and start		4.7		1.3		μs
tsts	I ² C start or repeated start condition setup		4.7		0.6		μs
tsth	I ² C start or repeated start condition hold		4		0.6		μs
tsps	I ² C stop condition setup		4		0.6		μs
tvd(data)	Valid data time	SCL low to SDA output valid		3.5		0.9	μs
tvd(ack)	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low		3.5		0.9	μs
Cb	I ² C bus capacitive load			400		400	pF

(1) All timing requirements should refer to I²C standard, and all parameters in table are NOT tested in production.

(2) ticr is decided by input signal rising time.

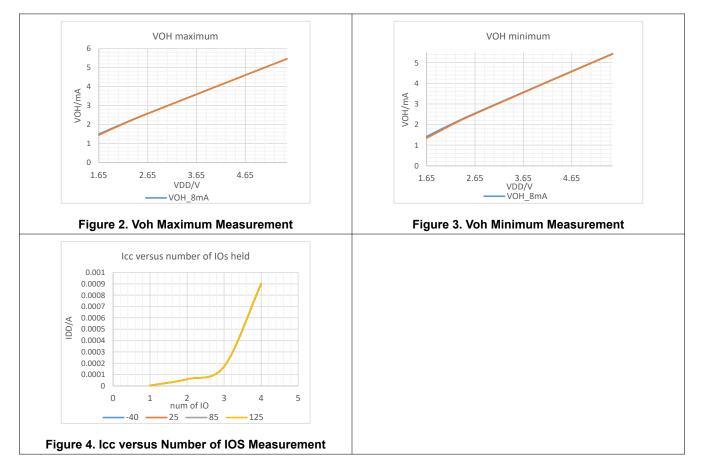
(3) Data is provided by bench validation, test condition: 150 ohm series resistor connect to SDA pin, then 2.2 Kohm pull up to VCC, 150 pF Cload pull down to GND, t_{icr} = 29 ns, t_{ocf} = 25 ns, V_{OL} = 166 mv



Switching Characteristics

Over recommended operating free-air temperature range, $C_L \leq 100 \text{ pF}$, unless otherwise noted.

	Description	From	То	Standa	ard Mod	Fast	Mode	Unit
	Description	(Input)	(Output)	Min	Max	Min	Max	Unit
tiv	Interrupt valid time	P port	ĪNT		4		4	μs
tir	Interrupt reset delay time	SCL	ĪNT		4		4	μs
tpv ~ 5	Output data valid; For V _{CC} = 2.3 V ~ 5.5 V		Durant		400		400	ns
	Output data valid; For V_{CC} = 1.65 V $\sim 2.3 \text{ V}$	SCL	P port		400		400	ns
tps	Input data setup time	P port	SCL	150		150		ns
tph	Input data hold time	P port	SCL	1		1		μs


Parameter Measurement Waveforms

Typical Performance Characteristics

Detailed Description

Overview

The TPT29555A is a 16-bit GPIO expander with interrupt and weak pull-up resistors for I²C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V that allows the TPT29555A to interconnect with 1.8-V microcontrollers.

The TPT29555A contains the register set of two pairs of 8-bit Configuration, Input, Output, and Polarity Inversion registers. The open-drain interrupt (\overline{INT}) output is changeable when any input state changes from its related register state and is used to indicate the system master that an input state has changed. \overline{INT} can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the TPT29555A can remain a simple slave device. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I^2C -bus address and allow up to eight devices to share the same I^2C -bus.

Functional Block Diagram

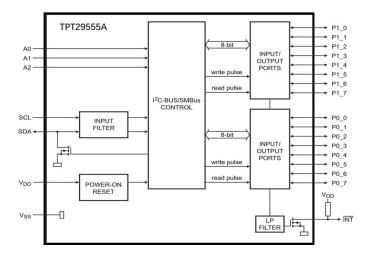
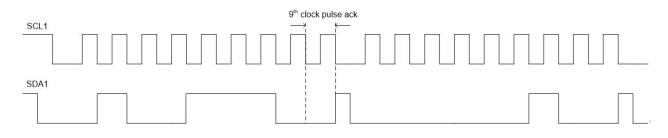



Figure 5. Functional Block Diagram

Feature Description

Figure 6. I²C BUS (1.65 V ~ 5.5 V) Waveform

5-V Tolerant I/O Ports

The TPT29555A supports the I/O voltage from 1.8 V to 5 V and allows the TPT29555A to connect to kinds of devices with I/O communication. To minimize the current consumption, suggest the input signal should meet the VIH and VIL spec in the Electrical Characteristics table. There is a weak pull-up resistor inside, and 100-K ohm for each I/O port. The user can choose certain value pull-up resistors external circuit depending on different applications.

Hardware Address Pins

The TPT29555A has 3 hardware address pins (A0, A1, and A2), the user can program the I^2C address of device by pulling high or low level to the address pin. This allows the same bus to support 8 TPT29555A without address conflicts. To avoid the possible I2C glitches cause the device address changing during a transmission, the voltage on the pins can not be changed while the device is powered up. All the pins must be tied either to V_{CC} or GND and cannot be left floating.

Interrupt (INT) Output

In the input mode, an interrupt is generated by any rising or falling edge of the port inputs. After time t_{V} , the output signal \overline{INT} is valid. When data on the port is changed to the original setting, or data is read from the port that generated the interrupt, it will reset the interrupt circuit. Reset operation should be in the read mode, and at the acknowledge (ACK) bit after the SCL rising edge. Note that the \overline{INT} is reset at the ACK just before the byte of changed data is sent. Interrupts that occur during the ACK clock pulse can be lost since the resetting of the interrupt during this pulse. Each change of the I/O after resetting is detected and generates the \overline{INT} output.

Reading or writing another device does not affect the interrupt circuit, and a pin configured as an output cannot trigger an interrupt. However, changing an I/O from output to input may cause a false interrupt if the pin state does not match the setting of the Input Port register. Because each port is read independently, for example, the interrupt caused by port 0 is not cleared by a read of port 1.

 $\overline{\text{INT}}$ is an open-drain structure and requires a pull-up resistor to V_{CC}, suggest the 10 k Ω as typical value.

Device Address

Following a START condition, the bus master must output the address of the slave it is accessing. All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I²C-bus address and allow up to eight devices to share the same I²C-bus. To conserve power, address pins (A0, A1, A2) must be pulled HIGH or LOW. The address of the TPT29555A is shown as below.

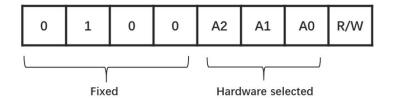


Figure 7. Slave Device Address

Control Register

Command Byte

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

Table 2. Command Byte Description

Command	Register
0	Input port 0
1	Input port 1
2	Output port 0
3	Output port 1
4	Polarity Inversion port 0
5	Polarity Inversion port 1
6	Configuration port 0
7	Configuration port 1

Register 0 and 1: Input port registers

This register is an input-only port, which means the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3 (output port 1), and writes to this register have no effect.

The default value 'X' is determined by the external logic level.

Table 3. Input Port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	10.7	10.6	10.5	10.4	10.3	10.2	10.1	10.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Table 4. Input Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	11.7	l1.6	l1.5	11.4	l1.3	l1.2	11.1	l1.0
Default	Х	Х	Х	Х	Х	Х	Х	Х

Register 2 and 3: Output port registers

This register is an output-only port, which means the outcoming logic levels of the pins are defined as outputs by Register 6 (Configuration port 0) and 7 (Configuration port 1). Bit values in this register have no effect on pins defined as inputs. In fact, the value reading from this register is in the flip-flop controlling the output selection, not the actual pin value.

Table 5. Output Port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	O0.7	O0.6	O0.5	O0.4	O0.3	O0.2	O0.1	O0.0
Default	1	1	1	1	1	1	1	1

Table 6. Output Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	01.7	O1.6	01.5	01.4	01.3	01.2	01.1	O1.0
Default	1	1	1	1	1	1	1	1

Register 4 and 5: Polarity Inversion registers

This register allows the user to invert the polarity of the input port register data. If a bit in this register is set (written with '1'), the input port data polarity is inverted. If a bit in this register is cleared (written with '0'), the input port data polarity is retained.

Table 7. Polarity Inversio	n Port 0 Register
----------------------------	-------------------

Bit	7	6	5	4	3	2	1	0
Symbol	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0
Default	0	0	0	0	0	0	0	0

Table 8. Polarity Inversion Port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	N1.7	N1.6	N1.5	N1.4	N1.3	N1.2	N1.1	N1.0
Default	0	0	0	0	0	0	0	0

Register 6 and 7: Configuration registers

This register configures the directions of the I/O pins. If a bit in this register is set (written with '1'), the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is cleared (written with '0'), the corresponding port pin is enabled as an output. Note that there is a high-value resistor tied to V_{DD} at each pin. At reset, the device's ports are inputs with a pull-up to V_{DD} .

Table 9. Configuration port 0 Register

Bit	7	6	5	4	3	2	1	0
Symbol	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Default	1	1	1	1	1	1	1	1

Table 10. Configuration port 1 Register

Bit	7	6	5	4	3	2	1	0
Symbol	C1.7	C1.6	C1.5	C1.4	C1.3	C1.2	C1.1	C1.0
Default	1	1	1	1	1	1	1	1

Reserved register

As the part of SMBUS function, the register 0X0C is reserved. However, TPT29555A does not have the limitation, and the operation of these registers is allowed.

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPT29555A is a 16-bit GPIO expander with interrupt and weak pull-up resistors for l^2 C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V that allows the TPT29555A to interconnect with 1.8-V microcontrollers.

The TPT29555A contains the register set of two pairs of 8-bit configuration, input, output, and polarity inversion registers. The open-drain interrupt (\overline{INT}) output is changeable when any input state changes from its related register state and is used to indicate the system master that an input state has changed. \overline{INT} can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I²C-bus. Thus, the TPT29555A can remain a simple slave device. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components. Three hardware pins (A0, A1, A2) select the fixed I^2C -bus address and allow up to eight devices to share the same I^2C -bus.

Typical Application

The following figure shows an application in which the TPT29555A can be used to control multiple subsystems, and read inputs from buttons.

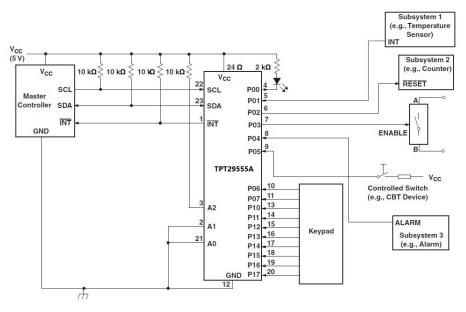


Figure 8. Typical Application Reference Circuit

Layout

Layout Guideline

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change in the width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This change in width upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace, thus resulting in the reflection. Not all PCB traces can be straight, so they will have to turn corners. Figure 9 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

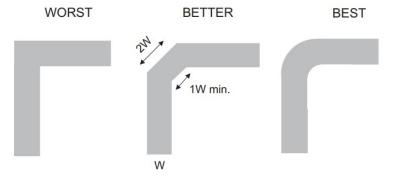


Figure 9. Trace Example

Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

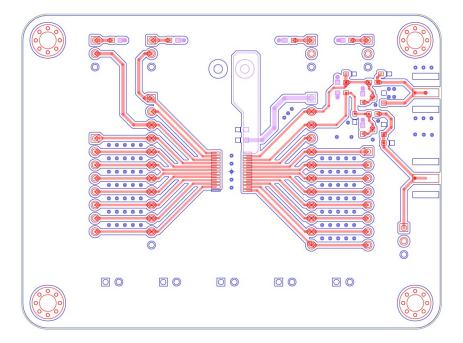
Layout Example

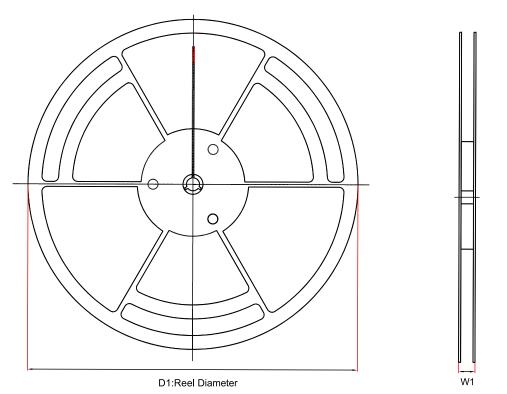
Figure 10 illustrates an example of a PCB layout with the TPT29555A. Some key considerations are as follows:

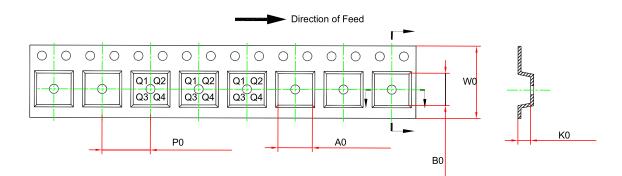
- Decouple the VDD pin with a 0.1-µF capacitor, placed it as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the VDD supply.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

TPT29555A

I²C to 16-Bit GPIO Expander with Interrupt



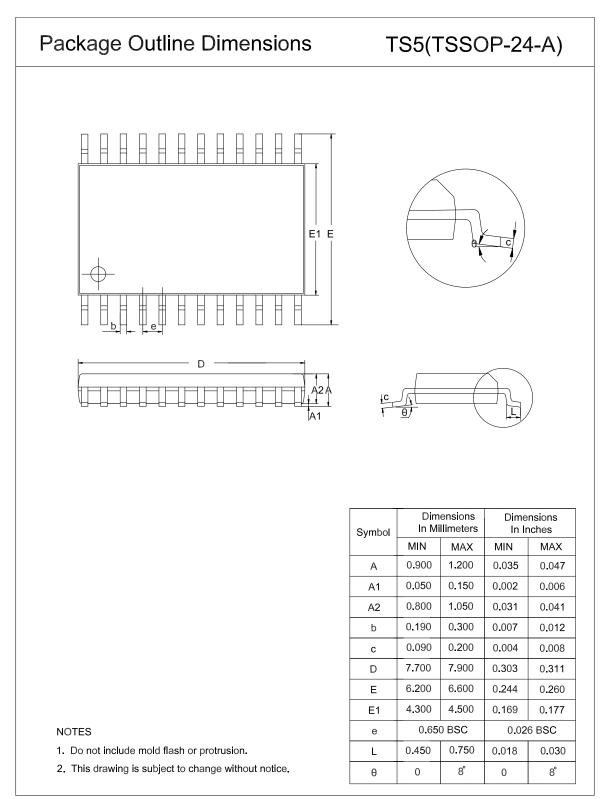

Figure 10. TPT29555A Layout Example



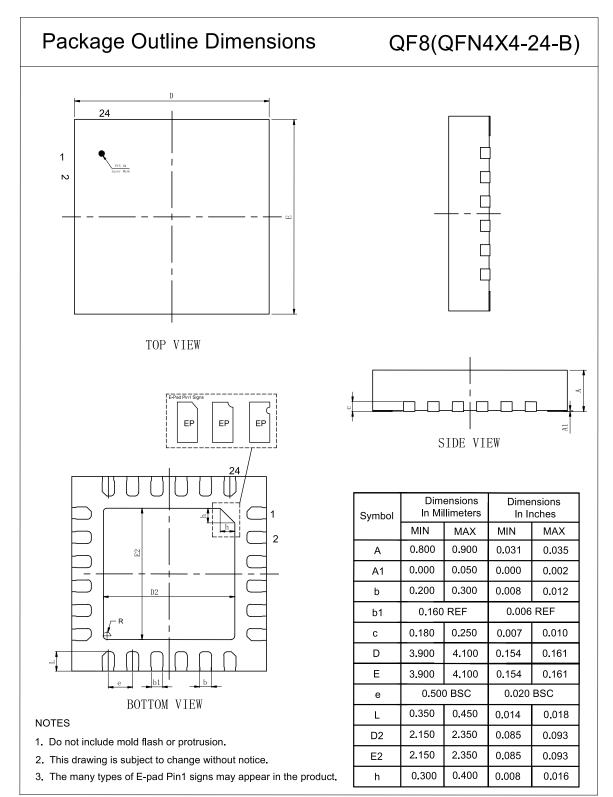
TPT29555A

I²C to 16-Bit GPIO Expander with Interrupt

Tape and Reel Information



Order Number	Package	D1 (mm)	A0 (mm)	K0 (mm)	W0 (mm)	W1 (mm)	B0 (mm)	P0 (mm)	Pin1 Quadrant
TPT29555A- TS5R	24-Pin TSSOP	330	6.8	1.6	16	21.6	8.3	8	Q1
TPT29555A- QF8R	24-Pin QFN	330	4.3	1.1	12	17.6	4.3	8	Q2


Package Outline Dimensions

TSSOP24

QFN4X4-24

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPT29555A-TS5R	−40 to 125°C	TSSOP24	9555A	MSL3	4,000	Green
TPT29555A-QF8R	−40 to 125°C	24-Pin QFN	9555A	MSL3	3,000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.