

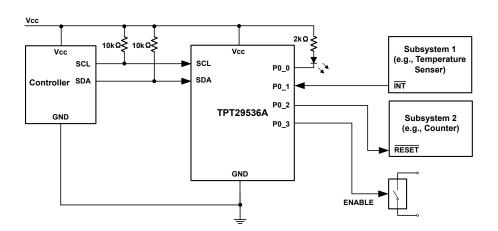
Features

- I²C-Bus to 4-Bit GPIO Expander
- Operating Power Supply Voltage from 1.65 V to 5.5 V
- · Low Standby Current
- 400-kHz Fast-Mode I²C Bus
- 5-V Tolerant I/Os
- · Polarity Inversion Register
- Noise Filter on SCL/SDA Inputs
- Internal Power-on Reset
- Power-up with All Channels Configured as Inputs with Weak Pull-up Resistors
- ESD Protection Exceeds JESD 22
 - 3000-V Human Body Model
 - 1500-V Charged-Device Model

Applications

- Servers/Storages
- · Routers (Telecom Switching Equipment)
- Personal Computers

Description


The TPT29536A is a 4-bit GPIO expander with interruption and weak pull-up resistors for I²C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V, allowing the TPT29536A to interconnect with 1.8-V microcontrollers.

The TPT29536A contains the register of 4-bit Configuration, Input, Output, and Polarity Inversion registers. The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components.

TPT29536A is available in the MSOP8 package.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	6
Thermal Information	6
Electrical Characteristics.	7
I ² C Interface Timing Requirements ⁽¹⁾	9
Switching Characteristics	10
Parameter Measurement Waveforms	10
Typical Performance Characteristics	11
Detailed Description	12
Overview	12
Functional Block Diagram	12
Feature Description	12
Device Address	13
Application and Implementation	16
Application Information	16
Typical Application	16
Layout	17
Layout Guideline	17
Layout Example	17
Tape and Reel Information	19
Package Outline Dimensions	20
MSOP8	20
Order Information	21
IMPORTANT NOTICE AND DISCLAIMER	22

Revision History

Date	Revision	Notes
2024-09-14	Rev.P.0	Initial version
2024-11-20	Rev.A.0	Released version

www.3peak.com 3 / 22 CA20240903A0

Pin Configuration and Functions

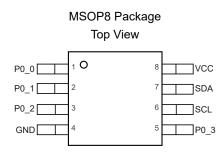


Table 1. Pin Functions: TPT29536A

Pin	Name	I/O	Description
4	GND	GND	Ground
1	P0_0	I/O	P-port I/O. Push-pull design structure. At power on, P0_0 is configured as an input
2	P0_1	I/O	P-port I/O. Push-pull design structure. At power on, P0_1 is configured as an input
3	P0_2	I/O	P-port I/O. Push-pull design structure. At power on, P0_2 is configured as an input
5	P0_3	I/O	P-port I/O. Push-pull design structure. At power on, P0_3 is configured as an input
6	SCL	Input	Serial clock bus. Connect to VCC through a pull-up resistor
7	SDA	Input	Serial data bus. Connect to VCC through a pull-up resistor
8	VCC	Supply	Supply voltage

www.3peak.com 4 / 22 CA20240903A0

Specifications

Absolute Maximum Ratings (1)

	Parameter		Max	Unit
Vcc	Supply Voltage	-0.5	6	V
VI	Input Voltage	-0.5	6	V
Vo	Output Voltage	-0.5	6	V
I _{IK}	Input Clamp Current, V _I < 0		-20	mA
lok	Output Clamp Current, V _O < 0		-20	mA
I _{IOK}	Input-Output Clamp Current, V _O < 0 or V _O > V _{CC}		±20	mA
I _{OL}	Continuous Output Low Current, Vo = 0 to Vcc		50	mA
Іон	Continuous Output High Current, Vo = 0 to Vcc		-50	mA
	Continuous Current through GND		-250	mA
ICC	Continuous Current through V _{CC}		160	mA
TJ	Maximum Junction Temperature		150	°C
T _{stg}	Storage Temperature	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

	Parameter	Condition	Value	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±3	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	±1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

www.3peak.com 5 / 22 CA20240903A0

⁽²⁾ This data was taken with the JEDEC low effective thermal conductivity test board.

⁽³⁾ This data was taken with the JEDEC standard multilayer test boards.

⁽²⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Over-operating free-air temperature range (unless otherwise noted).

	Parai	Min	Max	Unit	
Vcc	Supply Voltage		1.65	5.5	V
V	High Lovel Innut Valence	SCL, SDA	0.7 × V _{CC}	Vcc	V
ViH	High-Level Input Voltage	P0_3 ~ P0_0	0.7 × V _{CC}	5.5	V
V	V _{IL} Low-Level Input Voltage	SCL, SDA	-0.5	0.3 × V _{CC}	V
VIL		P0_3 ~ P0_0	-0.5	0.3 × Vcc	V
Іон	High-Level Output Current	P0_3 ~ P0_0		-10	mA
	Lave Lavel Output Comment	P0_3 ~ P0_0		25	mA
I _{OL}	Low-Level Output Current SDA			6	mA
_	On anoting Town and the Dance	V _{CC} = 1.65 ~ 3.6 V	-40	125	°C
T _A Operating Temperature Range	V _{CC} = 4.5 ~ 5.5 V	-40	105	°C	

⁽¹⁾ The algebraic convention, in which the least positive (most negative) limit is designated as the minimum, is used in this datasheet.

Thermal Information

Package Type	θυΑ	θυς	Unit
MSOP8	148.7	48.4	°C/W

www.3peak.com 6 / 22 CA20240903A0

Electrical Characteristics

All test conditions: V_{CC} = 1.65 V ~ 3.6 V, T_A = -40 ~ +125°C; V_{CC} = 4.5 V ~ 5.5 V, T_A = -40 ~ +105°C, unless otherwise noted.

Parameter		Conditions		Min	Тур	Max	Unit
Input E	lectrical Specifications						
\/	Power-on Reset Voltage, V _{CC} Rising	$V_1 = V_{CC}$ or GND; $I_0 = 0$ m/	A		1.25	1.5	V
V _{POR}	Power-on Reset Voltage, V _{CC} Falling	$V_1 = V_{CC}$ or GND; $I_0 = 0$ m/	A	0.7	1.2		V
loL	Low-Level Output Current, SDA	V _{OL} = 0.4 V; V _{CC} = 1.65 V t	o 5.5 V	3			mA
		I _{OL} = 8 mA; V _{CC} = 1.65 V				0.5	V
	Low-Level Output Voltage, P	I _{OL} = 8 mA; V _{CC} = 2.3 V				0.5	V
	port	I _{OL} = 8 mA; V _{CC} = 3.0 V				0.5	٧
.,		I _{OL} = 8 mA; V _{CC} = 4.5 V				0.5	V
V _{OL}		I _{OL} = 10 mA; V _{CC} = 1.65 V				0.7	V
	Low-Level Output Voltage, P	I _{OL} = 10 mA; V _{CC} = 2.3 V				0.7	V
	port	I _{OL} = 10 mA; V _{CC} = 3.0 V			0.7	V	
		I _{OL} = 10 mA; V _{CC} = 4.5 V			0.7	V	
		$I_{OH} = -8 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2			V	
	High-Level Output Voltage, P	$I_{OH} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8			V	
	port	$I_{OH} = -8 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6			V	
.,		$I_{OH} = -8 \text{ mA}; V_{CC} = 4.75 \text{ V}$	4.1			V	
V _{OH}		$I_{OH} = -10 \text{ mA}$; $V_{CC} = 1.65 \text{ V}$		1.0			V
	High-Level Output Voltage, P	$I_{OH} = -10 \text{ mA}$; $V_{CC} = 2.3 \text{ V}$		1.7			V
	port	I _{OH} = -10 mA; V _{CC} = 3.0 V		2.5			V
		$I_{OH} = -10 \text{ mA}; V_{CC} = 4.75 \text{ V}$		4.0			V
I	Input Current: SCL, SDA	V_{CC} = 1.65 V to 5.5 V, V_{I} =	V _{CC} or GND	-1		1	μA
Іін	High-Level Input Current: P port	V _I = V _{CC} ; V _{CC} = 1.65 V to 5	.5 V			1	μA
I _{IL}	Low-Level Input Current: P	V _I = GND; V _{CC} = 1.65 V to 5.5 V		-100			μA
			V _{CC} = 5.5 V		22.7	26	μA
		Active mode, IO = 0 mA;	V _{CC} = 3.6 V		12	14	μA
		I/O = inputs; f _{SCL} = 400 kHz	V _{CC} = 2.7 V		8.2	10	μA
Icc	Supply Current		V _{CC} = 1.95 V		5.6	7	μA
		Standby Mode, input low,	V _{CC} = 5.5 V		0.22	0.29	mA
		IO = 0 mA; I/O = inputs;	V _{CC} = 3.6 V		0.15	0.2	mA
		fS _{SCL} = 0 kHz	V _{CC} = 2.7 V		0.11	0.16	mA

www.3peak.com 7 / 22 CA20240903A0

Parameter		Conditions		Min	Тур	Max	Unit
			V _{CC} = 1.95 V		0.08	0.11	mA
			V _{CC} = 5.5 V		0.73	1.5	μA
		$IO = 0$ mA; $I/O = inputs$; $f_{SCL} = 0$ kHz	V _{CC} = 3.6 V		0.43	1.2	μΑ
			V _{CC} = 2.7 V		0.3	1	μΑ
			V _{CC} = 1.95 V		0.19	0.95	μA
Ci	Input Capacitance	V _I = V _{CC} or GND; V _{CC} = 1.6	5 V to 5.5 V ⁽¹⁾		3		pF
		$V_{I/O} = V_{CC}$ or GND; $V_D = 1.65 \text{ V to } 5.5 \text{ V}^{(1)}$			3		pF
Cio	Input/Output Capacitance	$V_{I/O} = V_{CC}$ or GND; $V_{CC} = 1$.	65 V to 5.5 V		5		pF

⁽¹⁾ Parameters are provided by lab bench tests and design simulation. Not tested in production.

www.3peak.com 8 / 22 CA20240903A0

I²C Interface Timing Requirements ⁽¹⁾

Over recommended operating free-air temperature range, unless otherwise noted.

Description			Conditions Standard Mod Min Max		Fast Mode		
		Conditions			Min	Max	Unit
fscl	I ² C clock frequency		0	100	0	400	kHz
tsch	I ² C clock high time		4		0.6		μs
tscl	I ² C clock low time		4.7		1.3		μs
tsp	I ² C spike time			50		50	ns
tsds	I ² C serial-data setup time		250		100		ns
tsdh	I ² C serial-data hold time		0		0		ns
ticr (2)	I ² C input rise time			1000	20	300	ns
Ticf (3)	I ² C input fall time			300	20 × (V _{CC} / 5.5 V)	300	ns
tocf (3)	I ² C output fall time	10-pF to 400-pF bus		300	20 × (V _{CC} / 5.5 V)	300	ns
tbuf	I ² C bus free time between stop and start		4.7		1.3		μs
tsts	I ² C start or repeated start condition setup		4.7		0.6		μs
tsth	I ² C start or repeated start condition hold		4		0.6		μs
tsps	I ² C stop condition setup		4		0.6		μs
tvd(data)	Valid data time	SCL low to SDA output valid		3.5		0.9	μs
tvd(ack)	Valid data time of ACK condition	ACK signal from SCL low to SDA (out) low		3.5		0.9	μs
Cb	I ² C bus capacitive load			400		400	pF

⁽¹⁾ All timing requirements should refer to the I²C standard, and all parameters in the table are NOT tested in production.

www.3peak.com 9 / 22 CA20240903A0

⁽²⁾ ticr is decided by input signal rising time.

⁽³⁾ Data is provided by bench validation, test condition: 150 ohm series resistor connect to SDA pin, then 2.2 Kohm pull up to VCC, 150 pF Cload pull down to GND, t_{icr} = 29 ns, t_{ocf} = 25 ns, V_{OL} = 166 mv

Switching Characteristics

Over recommended operating free-air temperature range, $C_L \le 100$ pF, unless otherwise noted.

December 1				Standard Mod		Fast Mode		l lmi4
	Description		(Output)	Min	Max	Min	Max	Unit
4	Output data valid; For V _{CC} = 2.3 V ~ 5.5 V	601	D 11 11		400		400	ns
tpv	Output data valid; For V _{CC} = 1.65 V ~ 2.3 V	SCL	P port		400		400	ns
tps	Input data setup time	P port	SCL	150		150		ns
tph	Input data hold time	P port	SCL	1		1	·	μs

Parameter Measurement Waveforms

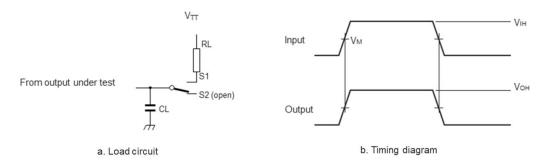
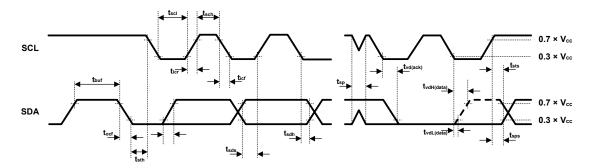
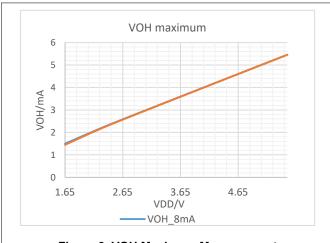
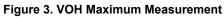


Figure 1. Load Circuit for Outputs


Figure 2. Definition of Timing on the I²C-bus

www.3peak.com 10 / 22 CA20240903A0

Typical Performance Characteristics

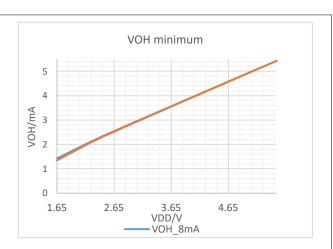


Figure 4. VOH Minimum Measurement

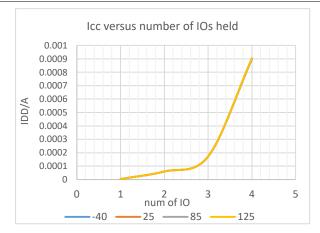


Figure 5. I_{CC} versus Number of I/Os Measurement

Detailed Description

Overview

The TPT29536A is a 4-bit GPIO expander with interruption and weak pull-up resistors for I²C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V, allowing the TPT29536A to interconnect with 1.8-V microcontrollers.

The TPT29536A contains the register of 4-bit Configuration, Input, Output, and Polarity Inversion registers. The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components.

Functional Block Diagram

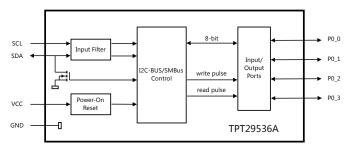


Figure 6. Functional Block Diagram

Feature Description

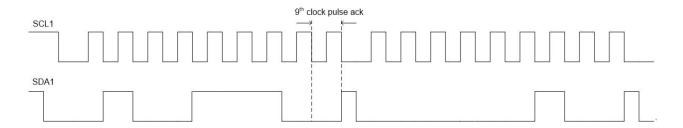


Figure 7. I²C BUS (1.65 V ~ 5.5 V) Waveform

5-V Tolerant I/O Ports

The TPT29536A supports the I/O voltage from 1.8 V to 5 V and allows the TPT29536A to connect to kinds of devices with I/O communication. To minimize the current consumption, suggest the input signal should meet the VIH and VIL spec in the Electrical Characteristics table. There is a weak pull-up resistor inside, and 100-K ohm for each I/O port. The user can choose certain value pull-up resistors external circuits depending on different applications.

When an I/O is configured as an input, creating a high-impedance input with a weak pull-up (100 k Ω typical) to V_{CC}. The input voltage may be raised above V_{CC} to a maximum of 5.5 V.

If the I/O is configured as an output, depending on the state of the Output Port register. The low-impedance paths that exist between the pin and either VCC or GND, as the external voltage is applied to an I/O configured as an output.

www.3peak.com 12 / 22 CA20240903A0

Power-on Reset

When power is connected to TPT29536A V_{CC} , an internal Power-On Reset (POR) is in a reset condition until V_{CC} has reached V_{POR} . At this point, the reset condition is released, and the TPT29536A registers and state machine set up to their default states. The V_{CC} must be lowered below V_{PORF} to reset the device and then restored to the operating voltage.

Device Address

Following a START condition, the bus master must output the address of the slave it is accessing. The TPT29536A has a fixed address shown as below.

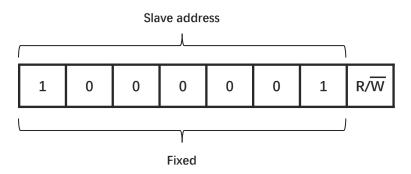


Figure 8. Slave Device Address

Control Register

Command Byte

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers is written or read.

Command	Protocol	Function
0	Read byte	Input Port register
1	Read/write byte	Output Port register
2	Read/write byte	Polarity Inversion register
3	Read/write byte	Configuration register

Table 2. Command Byte Description

The command byte is the first byte to follow the address byte during a write transmission. It is used as a pointer to determine which of the following registers will be written or read.

Register 0: Input port registers

This register is a read-only port. It reflects the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by Register 3. Writes to this register have no effect.

The default 'X' is determined by the externally applied logic level, normally logic 1 when no external signal is externally applied because of the internal pull-up resistors.

www.3peak.com 13 / 22 CA20240903A0

Table 3. Register 0: Input Port register bit description

Bit	7	6	5	4	3	2	1	0	
Symbol	10.7	10.6	10.5	10.4	10.3	10.2	10.1	10.0	
Access	read only	read only	read only	read only					
Default	1 1 1		1	1 1		Х	Х	Х	
Description	Not used				Determined by externally applied logic level				

Register 1: Output port registers

This register reflects the outgoing logic levels of the pins defined as outputs by Register 3. Bit values in this register have no effect on pins defined as inputs. Reads from this register return the value that is in the flip-flop controlling the output selection, not the actual pin value.

'Not used' bits can be programmed with either logic 0 or logic 1.

Table 4. Register 1: Output Port Register Bit Description

Bit	7	6	5	4	3	2	1	0	
Symbol	O0.7	O0.6	O0.5	O0.4	O0.3	O0.2	O0.1	O0.0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Default	1	1	1	1	1	1	1	1	
Description		Not	used		Reflects outgoing logic levels of pins defined as outputs by Register 3				

Register 2: Polarity Inversion registers

This register allows the user to invert the polarity of the Input Port register data. If a bit in this register is set (written with '1'), the corresponding Input Port data is inverted. If a bit in this register is cleared (written with a '0'), the Input Port data polarity is retained.

'Not used' bits can be programmed with either logic 0 or logic 1.

Table 5. Register 2: Polarity Inversion register bit description

Bit	7	6	5	4	3	2	1	0	
Symbol	N0.7	N0.6	N0.5	N0.4	N0.3	N0.2	N0.1	N0.0	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Default	0	0	0	0	0	0	0	0	
Description		Not	used		Inverts polarity of Input port register data: 0 = Input port register data retained (default value); 1 = Input port register data inverted				

Register 3: Configuration registers

This register configures the directions of the I/O pins. If a bit in this register is set (written with '1'), the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is cleared (written with '0'), the

www.3peak.com 14 / 22 CA20240903A0

corresponding port pin is enabled as an output. Note that there is a high-value resistor tied to V_{DD} at each pin. At reset, the ports of the devices are inputs with a pull-up to V_{DD} .

'Not used' bits can be programmed with either logic 0 or logic 1.

Table 6. Register 3: Configuration Register bit description

Bit	7	6	5	4	3	2	1	0
Symbol	C0.7	C0.6	C0.5	C0.4	C0.3	C0.2	C0.1	C0.0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Default	1	1	1	1	1	1	1	1
Description		Not	used		0 = correspor	nding port pin	f the I/O pins: enabled as an configured as	-

www.3peak.com 15 / 22 CA20240903A0

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPT29536A is a 4-bit GPIO expander with interruption and weak pull-up resistors for I²C-bus applications. The power supplier voltage range is from 1.65 V to 5.5 V, allowing the TPT29536A to interconnect with 1.8-V microcontrollers.

The TPT29536A contains the register of 4-bit Configuration, Input, Output, and Polarity Inversion registers. The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The power-on reset sets the registers to their default values and initializes the device state machine.

All input/output pins have internal weak pull-up resistors to remove external components.

Typical Application

The following figure shows an application in which the TPT29536A can be used to control multiple subsystems and read inputs from buttons.

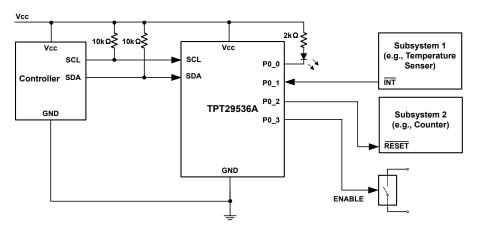


Figure 9. Typical Application Reference Circuit

www.3peak.com 16 / 22 CA20240903A0

Layout

Layout Guideline

Reflections and matching are closely related to loop antenna theory, but different enough to warrant their own discussion. When a PCB trace turns a corner at a 90° angle, a reflection can occur. This is primarily due to the change in the width of the trace. At the apex of the turn, the trace width is increased to 1.414 times its width. This change in width upsets the transmission line characteristics, especially the distributed capacitance and self-inductance of the trace, thus resulting in the reflection. Not all PCB traces can be straight, so they have to turn corners. Figure 10 shows progressively better techniques for rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections.

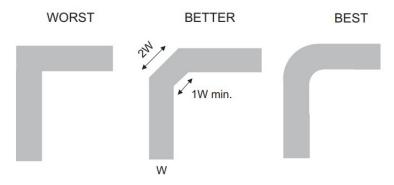


Figure 10. Trace Example

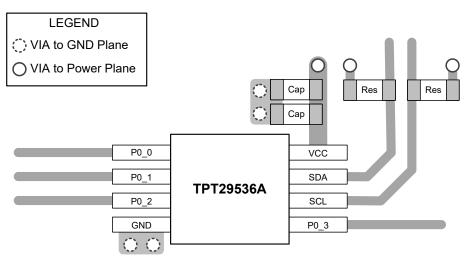
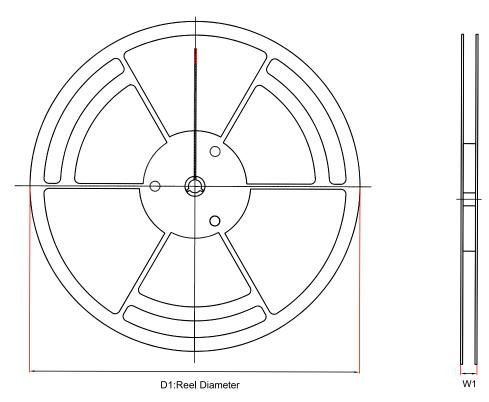
Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies.

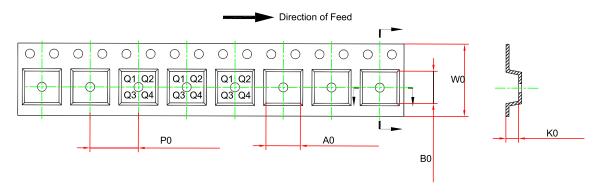
Layout Example

Figure 11 illustrates an example of a PCB layout with the TPT29536A. Some key considerations are as follows:

- Decouple the VDD pin with a 0.1-μF capacitor, and place it as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the VDD supply.
- · Keep the input lines as short as possible.
- Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

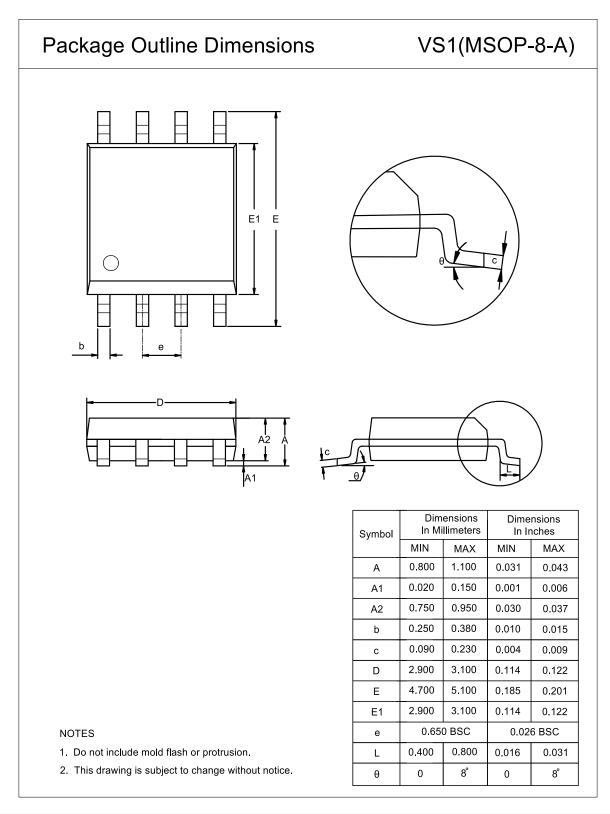
www.3peak.com 17 / 22 CA20240903A0


Figure 11. TPT29536A Layout Example

www.3peak.com 18 / 22 CA20240903A0

Tape and Reel Information



Order Number	Package	D1 (mm)	A0 (mm)	K0 (mm)	W0 (mm)	W1 (mm)	B0 (mm)	P0 (mm)	Pin1 Quadrant
TPT29536A-VS1R	MSOP8	330.0	5.3	1.3	12.0	17.6	3.4	8.0	Q1

Package Outline Dimensions

MSOP8

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan	
TPT29536A-VS1R	−40 to 125°C	MSOP8	9536A	MSL1	3,000	Green	

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 21 / 22 CA20240903A0

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2025. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 22 / 22 CA20240903A0