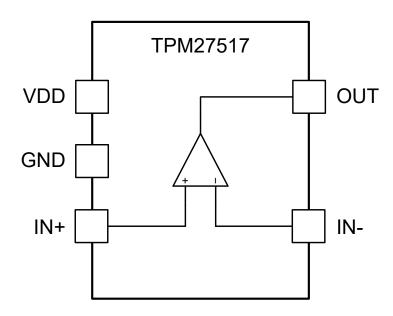


Features

- Industry-Standard Pin-Out
- 4.5-V to 23-V Single-Supply Range
- Single Channel 5-A Peak Source and Sink-Drive Current
- TTL and CMOS Compatible Threshold
- Outputs Held Low During VDD-UVLO or Input Floating
- Low Propagation Delay (13-ns Typical)
- Fast Rise and Fall Times (7-ns and 6-ns Typical)
- ESD Protection Exceeds JESD 22 6-kV HBM, 1.5-kV CDM
- Available in SOT23-5 Package

Applications

- Switched-Mode Power Supplies
- DC-DC Converters
- · Motor Control, Solar Inverters, UPS
- Gate & IGBT Drive


Description

The TPM27517 is a single-channel low-side gate-driver for MOSFET, IGBT, and GaN power switches.

The high sourcing and sinking current capability of 5-A improves switching efficiencies by minimizing slew time and switching loss. The device supports a maximum 25-V supply voltage and -5-V input voltage, and improves system robustness, especially in noisy industrial applications. The ultra-low propagation delay allows applications with tight timing requirements.

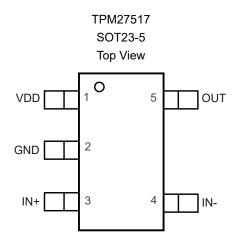
A small SOT23-5 package assists with the design for highdensity power supply.

Typical Application Circuit

www.3peak.com 1 / 18 EA20241002A1

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	5
Electrical Characteristics	6
Typical Performance Characteristics	8
Detailed Description	11
Overview	11
Functional Block Diagram	11
Feature Description	11
Application and Implementation	13
Tape and Reel Information	14
Package Outline Dimensions	15
SOT23-5	15
Order Information	16
IMPORTANT NOTICE AND DISCLAIMER	17


Revision History

Date	Revision	Notes		
2021-09-08	Rev.A.0	Initial released version		
2024-10-22	Rev.A.1	Updated to a new datasheet format		

www.3peak.com 3 / 18 EA20241002A1

Pin Configuration and Functions

Table 1. Pin Function

Pin No.	Name	I/O	Description		
2	GND	Ground	Ground.		
3	IN+	I	The logic non-inverting input.		
4	IN-	I	The logic inverting input.		
5	OUT	0	The channel output.		
1	VDD	Power	The power supply input.		

www.3peak.com 4 / 18 EA20241002A1

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
V_{DD}	Power Supply Voltage	-0.3	25	V
OUT	Output Voltage Range	-0.3	V _{DD} + 0.3	٧
OUT	Output Voltage Range (200-ns Pulse)	-2	V _{DD} + 0.3	V
IN+, IN-	Input Voltage Range	-5	20	V
	Continuous Output Channel Current OUT	-300	300	mA
	Pulsed Output Channel Current OUT (500 ns)	-5	5	Α
TJ	Maximum Operating Junction Temperature	-40	150	°C
T _{STG}	Storage Temperature Range	-65	150	Ĵ
TL	Lead Temperature (Soldering, 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±6	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	±1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter	Min	Тур	Max	Unit
V_{DD}	Power Supply Voltage	4.5		23	V
IN+, IN-	IN+, IN- Input Voltage Range			20	V
	Operating Ambient Temperature Range	-40		125	°C

Thermal Information

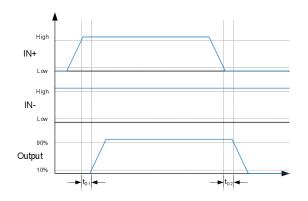
Package Type	θ _{JA}	θјс	Unit		
SOT23-5	89.1	52.0	°C/W		

www.3peak.com 5 / 18 EA20241002A1

⁽²⁾ The inputs are protected by ESD-protection diodes to each power supply. If the input extends more than 300 mV beyond the power supply, the input current should be limited to less than 10 mA.

⁽³⁾ The power dissipation and thermal limits must be observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.


Electrical Characteristics

All test conditions: V_{DD} = 12 V, T_J = -40°C to 150°C, 1- μ F capacitor between V_{DD} and GND, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		V _{DD} = 3.4 V, IN+ = H, IN- = L		40	100	
I _{DD (off)}	Start-up Current	V _{DD} = 3.4 V, IN+ = L, IN- = H		40	100	μA
	Supply under Voltage Lock-out Rising	T _J = 25 °C	3.91	4.2	4.5	
V_{ON}	Threshold	T _J = -40 °C to 150 °C	3.7	4.2	4.65	V
V _{OFF}	Supply under Voltage Lock-out Falling Threshold	T _J = -40 °C to 150 °C	3.4	3.9	4.4	V
V _{DD_H}	Supply under Voltage Lock-out Hysteresis		0.2	0.3	0.5	٧
V _{INH}	IN- High Threshold	IN- high threshold		1.9	2.3	V
V _{INL}	IN- Low Threshold	IN- low threshold	1	1.2		V
VINHYS	IN- Hysteresis		0.7	0.9	1.1	V
V _{IN+_H}	IN+ Signal High Threshold	IN+ high threshold		2.1	2.3	V
V _{IN+_L}	IN+ Signal Low Threshold	IN+ low threshold	1	1.2		V
V _{IN+_HYS}	IN+ Hysteresis		0.7	0.9	1.1	V
lout	Output Peak Current	$C_{LOAD} = 0.22 \mu F$, $F_{SW} = 1 \text{ kHz}$		±5		Α
V _{DD} – V _{OH}	Output High Voltage	I _{OUT} = −10 mA			40	mV
VoL	Output Low Voltage	I _{ОUТ} = 10 mA			10	mV
RoH	Output Pull-up Resistance, PMOS Pull-up Only	I _{OUT} = -10 mA	1	1.6	3	Ω
R _{OL}	Output Pull-Down Resistance	I _{OUT} = 10 mA	0.15	0.5	1	Ω
t _R	Output Rise-Time	C _{LOAD} = 1.8 nF		7	18	ns
t _F	Output Fall-Time	C _{LOAD} = 1.8 nF		6	10	ns
t _{PW} Minimal Pulse Width t _{D1} IN+ to Output Propagation Delay				15	25	ns
		C _{LOAD} = 1.8 nF, 5-V IN+ pulse	6	13	23	ns
t _{D2} IN+ to Output Propagation Delay		C _{LOAD} = 1.8 nF, 5-V IN+ pulse	6	13	23	ns
t _{D3} IN- to Output Propagation Delay		C _{LOAD} = 1.8 nF, 5-V IN- pulse	6	13	23	ns
t _{D4}	IN- to Output Propagation Delay	C _{LOAD} = 1.8 nF, 5-V IN- pulse	6	13	23	ns

www.3peak.com 6 / 18 EA20241002A1

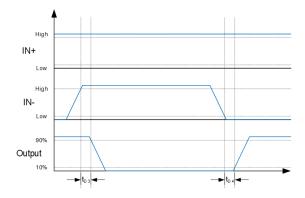
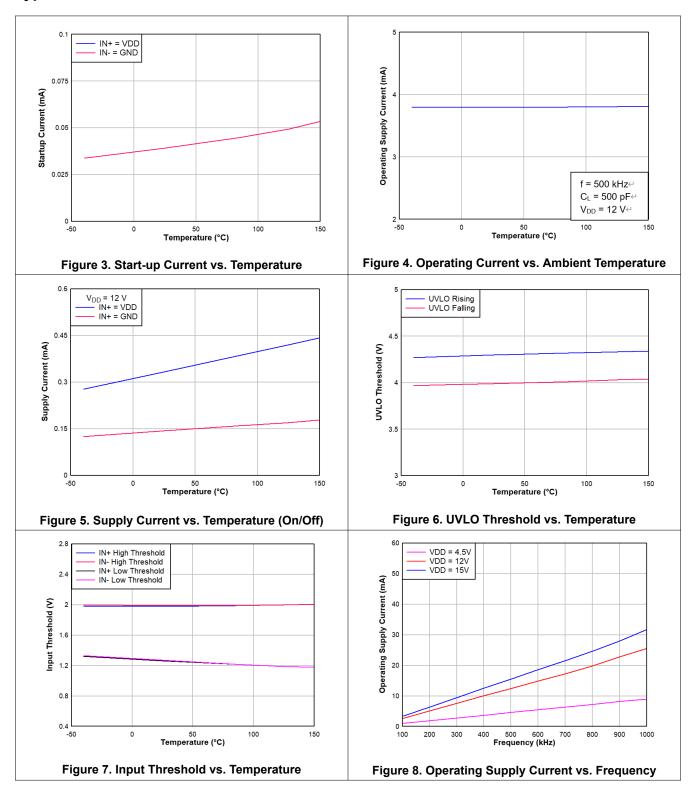
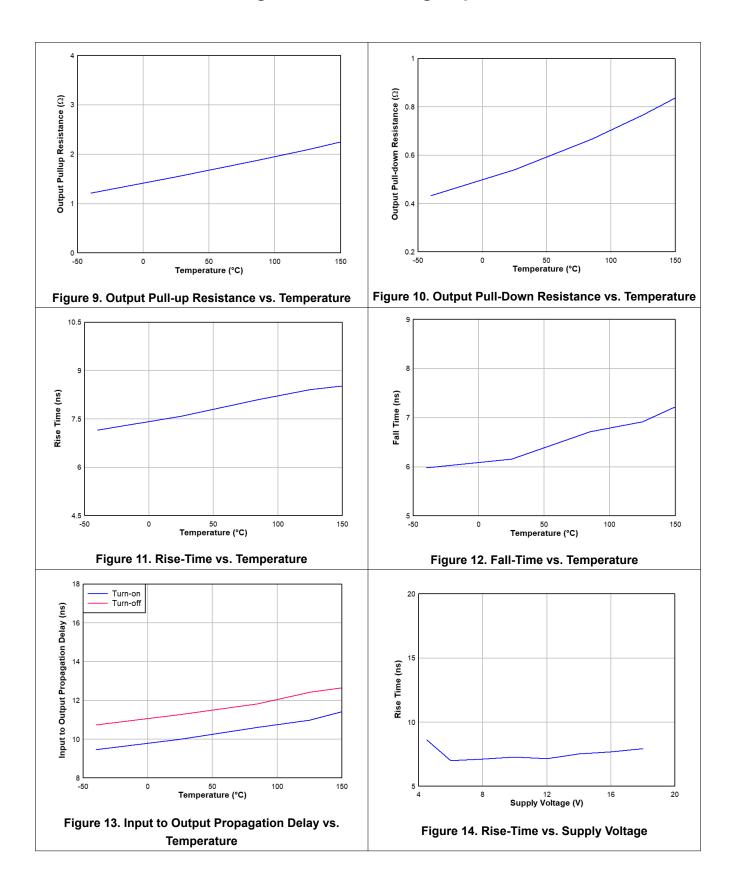
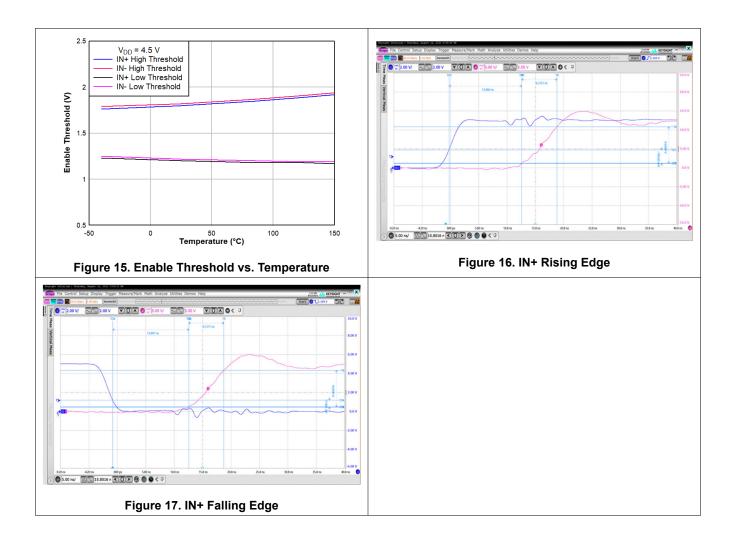



Figure 2. IN- Timing Diagram


www.3peak.com 7 / 18 EA20241002A1


Typical Performance Characteristics

www.3peak.com 10 / 18 EA20241002A1

Detailed Description

Overview

The TPM27517 single-channel low-side gate driver is designed for high-performance power supplies, motor controls, and inverters. Designed with the industrial standard pin-out and package, the TPM27517 accelerates the design process. With extended voltage ranges on the supply voltage and negative input voltage, the TPM27517 improves system-level reliability. Its 5-A strong driving capability improves the gate driver efficiency and lowers heat generation, especially in high-frequency switching applications.

Functional Block Diagram

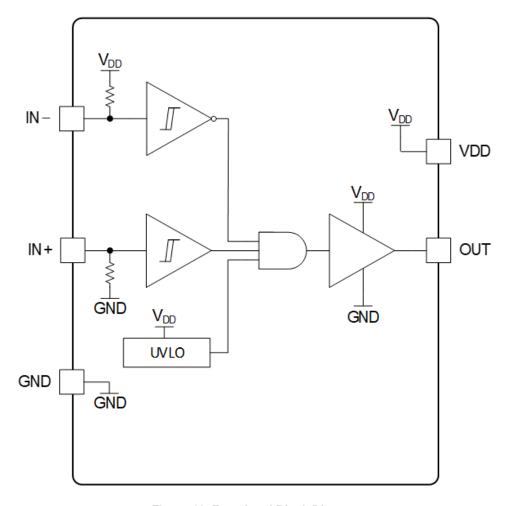


Figure 18. Functional Block Diagram

Feature Description

Low Propagation Delay Driver Output

The low-propagation-delay design allows the device to achieve industrial-leading low propagation delay between the device input and output. The low delay enhances driver performance in high-frequency switching regulators.

www.3peak.com 11 / 18 EA20241002A1

Supply and UVLO

The device monitors the supply voltage with under-voltage lock-out (UVLO). When the supply voltage is below the UVLO threshold, the output is held low in UVLO to avoid glitches during power rising and falling.

The quiescent current and operating current of the device are measured as shown in Figure 5. The current is related to the internal quiescent current consumption as well as the output current. The output current can be calculated using the external transistor gate charge times switching frequency f_{sw}.

Channel Input

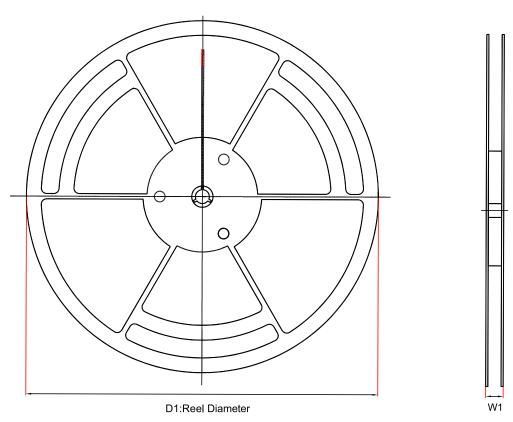
The input of the TPM27517 gate driver supports the TTL and CMOS input with threshold voltage independent of the supply voltage. The threshold is also designed as temperature-independent to support a wide range of ambient temperatures. The wide hysteresis enhances the system-level noise immunity. The integrated pull-down resistor sets the device in a low state when inputs are floating. Inputs can withstand DC -5 V, to improve robustness on ground bouncing.

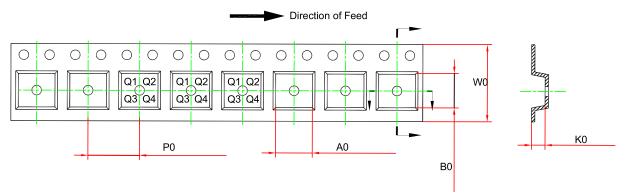
Output Stage

The output stage of the TPM27517 can deliver high current sourcing and sinking up to 5 A with low propagation delay.

www.3peak.com 12 / 18 EA20241002A1

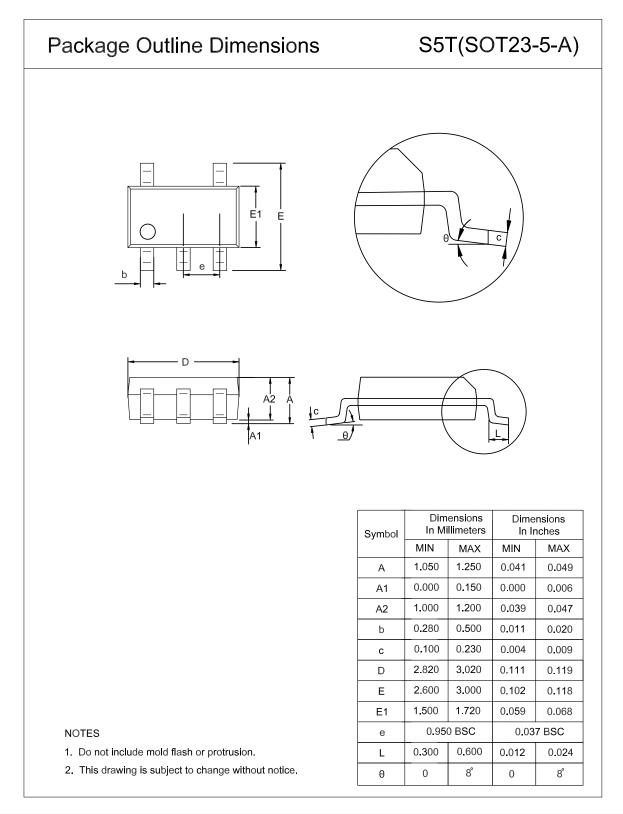
Application and Implementation


Note


Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

www.3peak.com 13 / 18 EA20241002A1

Tape and Reel Information


Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPM27517- S5TR	SOT23-5	180	12	3.3	3.25	1.4	4	8	Q3
TPM27517F- S5TR	SOT23-5	180	12	3.3	3.25	1.4	4	8	Q3

www.3peak.com 14 / 18 EA20241002A1

Package Outline Dimensions

SOT23-5

www.3peak.com 15 / 18 EA20241002A1

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan	
TPM27517-S5TR	-40 to 125°C ⁽¹⁾	SOT23-5	M57	3	Tape and Reel, 3000	Green	
TPM27517F-S5TR	-40 to 125°C ⁽¹⁾	SOT23-5	M57	3	Tape and Reel, 3000	Green	

⁽¹⁾ The ambient temperature indicates the operation condition range of the device. The application thermal behavior needs to be taken care of when operating in high-temperature scenarios.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 16 / 18 EA20241002A1

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 17 / 18 EA20241002A1

This page intentionally left blank

www.3peak.com 18 / 18 EA20241002A1