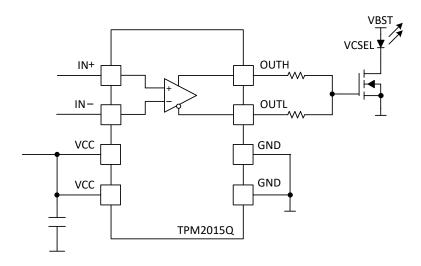


Features

- AEC-Q100 Grade-1 Qualified (TPM2015Q Only)
- 5-V Single Supply with Optimized Output Damping for Gan Reliability
- · 7-A Peak Source and 5-A Sink-Drive Current
- 0.69-ns Minimum Input Pulse Width (Typical)
- Low Propagation Delay (2-ns Typical)
- · Optimized Pinout for Nanosecond-pulse-width
- Fast Rise and Fall Times (0.45-ns and 0.45-ns Typical)
- ESD Protection Exceeds JESD 22 6-kV HBM, 1.5-kV CDM
- Available in Flip-Chip QFN2X2-10 Package


Applications

- Laser Distance Measuring System
- Automotive Lidar
- · Driver Monitoring System
- GaN DC/DC Conversion System

Description

The TPM2015Q family of products are low-side single-channel ultra-highspeed gate drivers for GaN and logic-level MOSFETs. It is optimized for high-speed applications such as Lidar and high-density power convertors with enhanced low propagation delay design. The 2-mm×2-mm flip-chip QFN package of the TPM2015 minimizes parasitic inductance in the gate driver power loop and achieves state-of-the-art narrow pulse width as short as 0.69 ns. Transient suppressors ensure reliable operation with ultra-fast high-current output pulses.

Typical Application Circuit

www.3peak.com 1 / 18 EA20230902A0

Table of Contents

Features	1
Applications	
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	9
Detailed Description	11
Overview	11
Functional Block Diagram	11
Feature Description	12
Application and Implementation	13
Application Information	13
Typical Application	13
Tape and Reel Information	15
Package Outline Dimensions	16
QFN2X2-10	16
Order Information	17
IMPORTANT NOTICE AND DISCLAIMER	18

Revision History

Date	Revision	Notes
2021-07-15	Rev. A.0	Initial release.

www.3peak.com 3 / 18 EA20230902A0

Pin Configuration and Functions

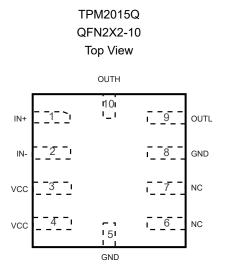


Table 1. Pin Functions: TPM2015Q

Pin No	Pin Name	I/O	Description			
1	IN+	Input	Channel Positive Input, Active High			
2	IN-	Input	Channel Negative Input, Active Low			
3	VCC	Supply	Device Supply			
4	VCC	Supply	Device Supply			
5	GND	Ground	Device Ground			
6	NC	NC	Not connected, recommend to tie to ground			
7	NC	NC	Not connected, recommend to tie to ground			
8	GND	Ground	Device Ground			
9	OUTL	Output	Channel Pull-down Output			
10	OUTH	Output	Channel Pull-up Output			

www.3peak.com 4 / 18 EA20230902A0

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
VCC	Power Supply Voltage	-0.3	+6	V
OUTH, OUTL	Output Voltage Range	-0.3	VCC + 0.3	٧
IN+, IN-	Input Voltage Range	-0.3	6	V
1011711	Continuous Output Channel Current	-500	+500	mA
IOUTH,	Pulsed Output Channel Sourcing Current OUTH (500 ns)		7	Α
IOUTE	Pulsed Output Channel Sinking Current OUTL (500 ns)		5	Α
TJ	Operating Junction Temperature Range	-40	150	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering, 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001, per AEC Q100-002	±6	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002, per AEC Q100-011	±1.5	kV

Recommended Operating Conditions

	Parameter	Min	Max	Unit
VCC	Power Supply Voltage	4.75	5.25	V
IN+, IN-	Input Voltage	0	VCC	V
VOUTH, VOUTL	Output Voltage	0	VCC	V
T _A	Operating Ambient Temperature Range	-40	125	°C

www.3peak.com 5 / 18 EA20230902A0

⁽²⁾ The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 300 mV beyond the power supply, the input current should be limited to less than 10 mA.

⁽³⁾ Power dissipation and thermal limits must be observed.

Thermal Information

Package Type	θ _{JA}	θυς	Unit
QFN2X2-10	87.54	119.32	°C/W

www.3peak.com 6 / 18 EA20230902A0

Electrical Characteristics

All test conditions: V_{CC} = 5 V, T_J = -40 °C to 150 °C, 1- μ F capacitor between V_{CC} and GND, unless otherwise noted.

	Parameter	Conditions	Min	Тур	Max	Unit
	V00 0 :	IN+ = H, IN- = L		105	200	
IQ	VCC Quiescent Current	IN+ = L, IN+ = H		105	200	μA
	VOC On anating Comment	fsw =30 MHz, no load, Rouтн = 2 Ω , RouтL = 2 Ω		40		mA
IOP	VCC Operating Current	f_{SW} = 30 MHz, 100-pF load, R_{OUTH} = 2 Ω , R_{OUTL} = 2 Ω		51		mA
VuvLO_rising	Supply Under Voltage Lock Out Rising Threshold		4	4.18	4.35	V
VUVLO_hys	Supply Under Voltage Lock Out Falling Hysteresis			85		mV
Т _{ОТР}	Over Temperature Shutdown, turn-off			170		°C
ΔT_{OTP}	Over Temperature Hysteresis			20		°C
V _{IN_} H	Input Signal High Threshold	Input high threshold	1.7	2.15	2.6	V
V _{IN_L}	Input Signal Low Threshold	Input low threshold	1.1	1.45	1.8	V
V _{IN_HYS}	Input Hysteresis		0.38		1	V
R _{IN_pulldown}	Input Pull-down Resistance		100	150	250	kΩ
C _{IN}	Input Capacitance				1.5	pF
V _{OL}	Output Low Voltage. OUTL	I _{OUTL} = 100 mA, IN+ = 0 V			36	mV
Vcc –Vон	Output High Voltage, OUTH	I _{OUTH} = 100 mA, IN- = 5 V			50	mV
Іон	Output Peak Sourcing Current	V _{OUTH} = 0 V, IN+ = 5 V		7		Α
I _{OL}	Output Peak Sinking Current	V _{OUTL} = 5 V, IN- = 0 V		5		Α
T _{start}	Startup Time, VDD rising above UVLO	INx = 5 V ,VDD rising above UVLO to OUTH rising		40	78	us
T _{shut-off}	ULVO Falling	INx = 5 V ,VDD falling below UVLO V to OUTH falling	0.7	2.5	3.5	us
T _{pd, r}	Propagation delay, turn on ⁽¹⁾	IN+ to OUTH, 100-pF load		2	4	ns
T _{pd, f}	Propagation delay, turn off ⁽¹⁾	IN- to OUTL, 100-pF load		2	4	ns
Δt_{pd}	Pulse Positive distrortion, $(t_{pd, f}, t_{pd, r})^{(1)}$			300	610	ps
t _R	Output Rise-time	0-Ω series 220-pF load		450		ps
t _F	Output Fall-time	0-Ω series 220-pF load		450		ps
t _{PW}	Minimum Input Pulse Width that changes output state	0-Ω series 220-pF load		0.69		ns

^{1.} Guaranted by design

www.3peak.com 7 / 18 EA20230902A0

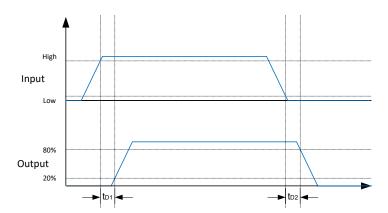


Figure 1. Input Timing Diagram

www.3peak.com 8 / 18 EA20230902A0

Typical Performance Characteristics

All test conditions: V_{OUT} = 5 V, T_A = +25°C, unless otherwise noted.

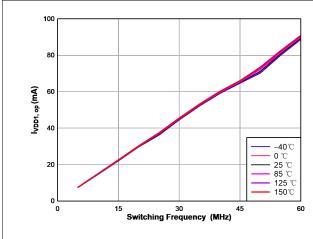


Figure 2. Operating Current vs Temperature

 $2\,\Omega$ in series with 100-pF Load

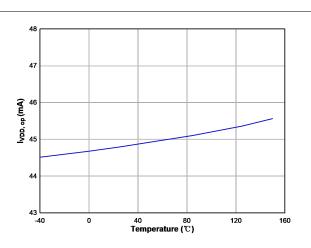


Figure 3. Operating Current vs Temperature

 2Ω in series with 100pF Load, frequency = 30 MHz

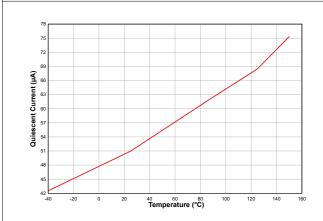


Figure 4. Quiescent current vs Temperature

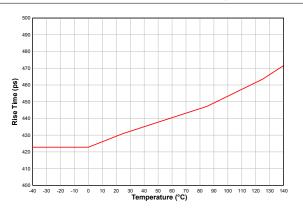


Figure 5. Rise time vs Temperature

load = 1.8 nC

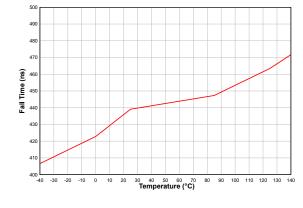


Figure 6. Fall time vs Temperature

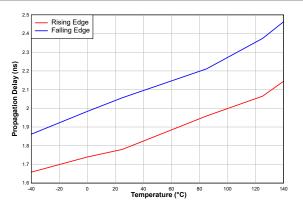
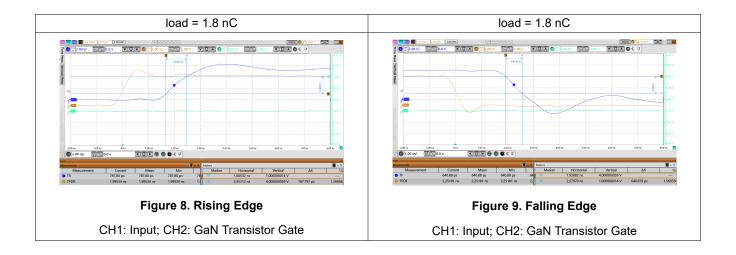



Figure 7. Propagation Delay vs Temperature

www.3peak.com 10 / 18 EA20230902A0

Detailed Description

Overview

The TPM20215Q family of products are low-side single-channel ultra-highspeed gate drivers for GaN and logic-level MOSFETs. It is optimized for high-speed applications such as Lidar and high-density power convertors with enhanced low propagation delay design. The 2-mm×2-mm flip-chip QFN package of the TPM2015 minimizes parasitic inductance in the gate driver power loop and achieves state-of-the-art narrow pulse width as short as 0.69 ns. Transient suppressors ensure reliable operation with ultra-fast high-current output pulses.

Functional Block Diagram

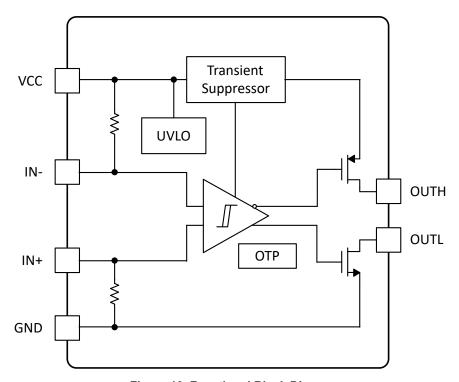


Figure 10. Functional Block Diagram

www.3peak.com 11 / 18 EA20230902A0

Feature Description

Supply and Under-Voltage-Lock-Out (UVLO)

The device has under-voltage-lock-out (UVLO) monitors. When supply voltage is above its rising threshold, the outputs are functional. When supply voltage is below its falling threshold, the device pulls OUTL to GND. A short deglitch timer is inserted to avoid oscillations on power supply.

Due to ultra-fast turn-on speed, channel output may drain high current on supply nodes within nanoseconds. 3PEAK recommends placing 3-terminal capacitors close to device supply pins as low as possible. Parasitic inductance may prevent external capacitors from supplying current in such a short time. The TPM2015Q has built in transient suppressor circuitry to avoid sudden drop which may trigger UVLO and cause output malfunction.

Channel Input and Output

The channel inputs are connected to a low-latency Schmitt trigger. It can cut propagation delay without additional gates. The inputs are pulled low via internal resistors.

The TPM2015 provides outputs with split pull-up and pull-down paths. The split outputs allow users to independently configure pull-up and pull-down slew-rate via external resistors. The maximum output sink/source current is +7 A / -5 A. Configuring slew rates may reduce ringing on GaN gate node due to parasitic inductance/capacitance, thus it can improve reliability of GaN transistors.

Over-Temperature Protection (OTP)

The TPM2015Q provides over temperature protection function to disable channel. When the junction temperature rises above the rising threshold, the channel outputs are disabled; when the junction temperature falls below the falling threshold, the channel outputs are enabled.

www.3peak.com 12 / 18 EA20230902A0

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

In modern Time-of-Flight (ToF) LiDAR system, it is necessary to ensure a narrow laser pulse. Gallium nitride (GaN) transistors are widely used in the industry due to its high switching frequency. As depicted in the schematic below, it is required to keep gate driver output loop as small as possible to minimize parasitic inductance.

Typical Application

Figure 11 shows the typical application schematic.

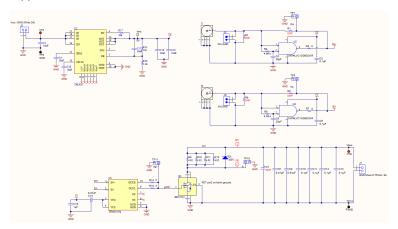
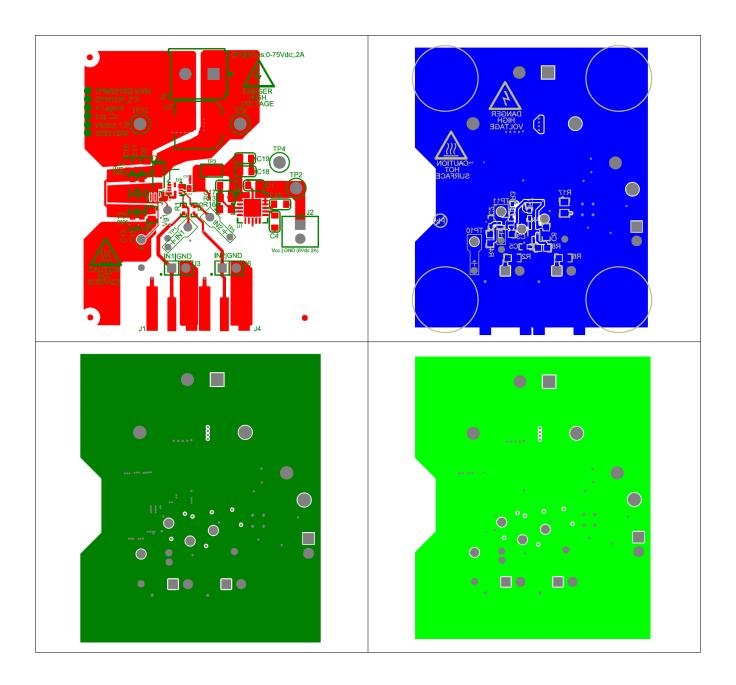
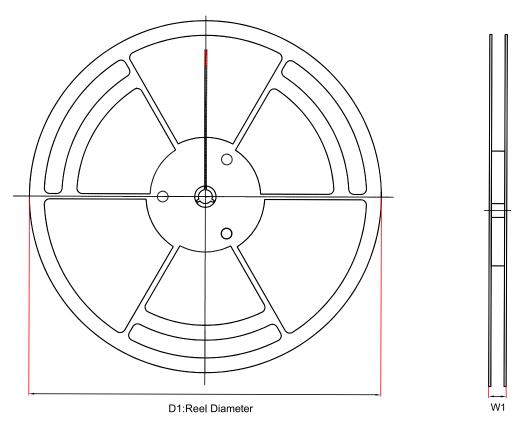
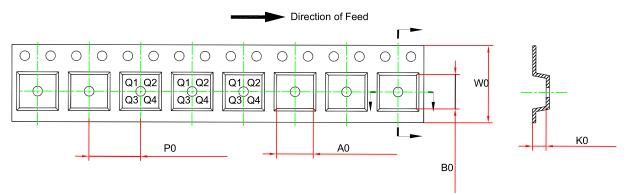
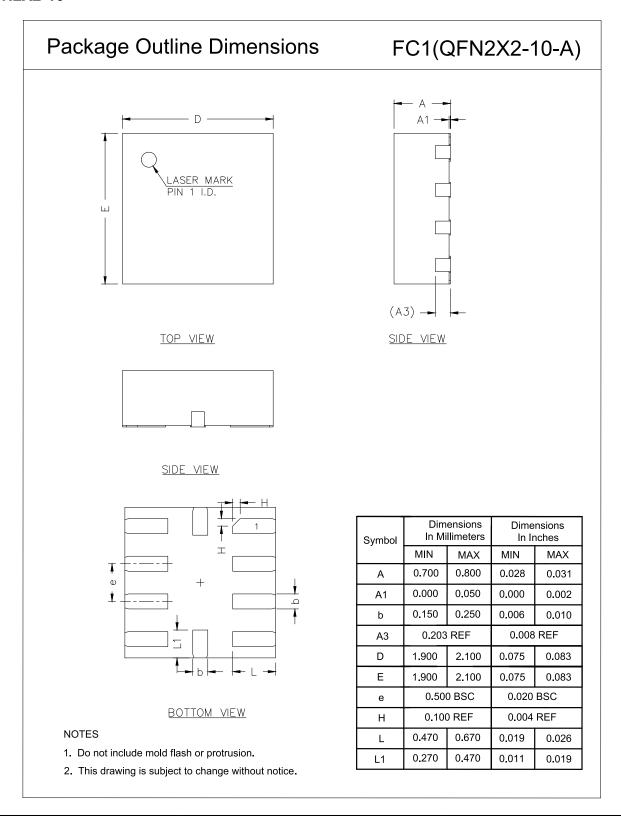



Figure 11. Typical TOF Lidar Application Schematic


www.3peak.com 13 / 18 EA20230902A0



Tape and Reel Information


Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPM2015Q- FC1R-S	QFN2X2-10	180	12.0	2.3	2.3	1.0	4	8	Q1
TPM2015- FC1R	QFN2X2-10	180	12.0	2.3	2.3	1.0	4	8	Q1

www.3peak.com 15 / 18 EA20230902A0

Package Outline Dimensions

QFN2X2-10

Order Information

Order Number	Operating Ambient Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPM2015Q-FC1R-S	–40 °C to 125 °C	QFN2X2-10	Q15	MSL3	3000	Green
TPM2015-FC1R	–40 °C to 125 °C	QFN2X2-10	Q15	MSL3	3000	Green

⁽¹⁾ The ambient temperature indicates device operation condition range. Application thermal behavior needs to be taken care of when operating in high temperature scenarios.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 17 / 18 EA20230902A0

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 18 / 18 EA20230902A0