

Features

Supply Voltage: 3.3 V to 5.25 VHigh Gain Bandwidth Product: 8 GHz

• High Slew Rate: 2700 V/µs

Offset Voltage: ±1.2 mV Maximum at 25 °C

Stable when Gain > 7 V/V
Quiescent Current: 19 mA
Overload Recovery: 2.8 nS

Package: 8-pin DFN

• -40°C to 125°C Operation Temperature Range

Applications

Automotive Lidar

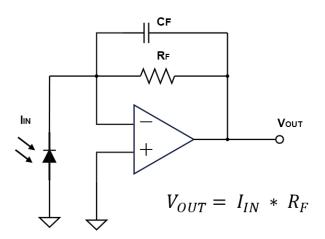
Lab Equipment

· Automated Test Equipment

OTDR

• Laser Distance Meter

Description


TPH2861 is a high-speed, low-noise operational amplifier with high-speed BJT inputs, suitable for broadband cross resistance and voltage amplifier applications.

The device with 8-GHz GBP can achieve enough closed-loop bandwidth even the transimpedance is about several tens of $k\Omega$ in the wideband transimpedance (TIA) applications.

The TPH2861 also has a large signal bandwidth of 850-MHz (2-VPP) , a slew rate of 2750-V/ μ s, and only 2.8 ns for overload recovery, making it suitable for high speed pulse applications.

The feedback pin (FB) of the TPH2861 decreases the distance of feedback network connection between the input and output on PCB, which benefits the achievement of high close-loop bandwidth.

Typical Application Circuit

www.3peak.com 1 / 18 AA20231203A0

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	5
Electrical Characteristics	6
Electrical Characteristics (continued)	7
Typical Performance Characteristics	9
Detailed Description	12
Overview	12
Functional Block Diagram	12
Feature Description	12
Application and Implementation	13
Application Information	13
Tape and Reel Information	14
Package Outline Dimensions	15
DFN2X2-8-D	15
Order Information	16
IMPORTANT NOTICE AND DISCLAIMER	17

Revision History

Date	Revision	Notes
2023-12-21	Rev.A.0	Initial version.

www.3peak.com 3 / 18 AA20231203A0

Pin Configuration and Functions

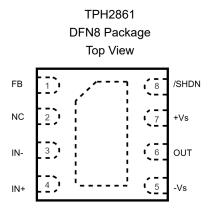


Table 1. Pin Functions: TPH2861

Pin No.	Name	I/O	Description
1	FB	Input	Feedback connection to output of amplifier
2	N/C		No connection
3	IN-	Input	Inverting input
4	IN+	Input	Noninverting input
5	-Vs		Negative power supply
6	Out	Output	Output
7	+V _S		Positive power supply
8	/SHDN	Input	Shut down input, the device is shut down when the low-level input voltage is on the input; the device is active when the high-level input voltage is on the input. The device is active in default with a internal pull-up resistor.

www.3peak.com 4 / 18 AA20231203A0

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
	Supply Voltage, (+V _S) - (-V _S)		5.5	V
	Input Voltage	(-V _S) - 0.3	$(+V_S) + 0.3$	V
	Differential Input Voltage	(-V _S) - (+V _S)	(+V _S) - (-V _S)	V
	Input Current: +IN, –IN (2)	-1	+1	mA
	Output Short-Circuit Duration (3)		Infinite	
TJ	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-40	125	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		260	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Parameter		Condition	Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter	Min	Тур	Max	Unit
Vs	Supply Voltage, (+V _S) – (-V _S)	3.3 (±1.65)		5.25 (±2.625)	٧
T _A	Operating Temperature Range	-40		125	°C

Thermal Information

Package Type	θја	Ө лс	Unit
DFN2X2-8	100	60	°C/W

www.3peak.com 5 / 18 AA20231203A0

⁽²⁾ The inputs are protected by ESD protection diodes to power supply. If the input extends more than 300 mV beyond the power supply, the input current should be limited to less than 10 mA.

⁽³⁾ A heat sink may be required to keep the junction temperature below the absolute maximum rating. This depends on the power dissipation of the application. Thermal resistance varies with the amount of PC board metal connected to the package.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

All test conditions: $V_S = 5 \text{ V}$, $V_{CM} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, G = 7V/V, input common-mode biased at mid-supply, unless otherwise noted.

	Parameter	Conditions	Min	Тур	Max	Unit
Power St	ıpply					
Vs	Supply Voltage Range		3.3		5.25	V
	0 : 10 1 1 1:5			19	24	mA
IQ	Quiescent Current per Amplifier	T _A = -40°C to 125°C			27	mA
DODD.	Positive Power-supply Rejection		80	87		dB
PSRR+	Ratio	T _A = -40°C to 125°C	72			dB
DODD	Negative Power-supply Rejection		63	71		dB
PSRR-	Ratio	T _A = -40°C to 125°C	60			dB
Input Cha	aracteristics					
.,	1 Off t \ / - 1t		-1.8	0.2	1.8	mV
Vos	/os Input Offset Voltage	T _A = -40°C to 125°C	-2.5		2.5	mV
VosTC	Input Offset Voltage Drift	T _A = -40°C to 125°C		2		μV/°C
I _B	Input Bias Current		-45	-23	-6	μA
los	Input Offset Current		-4	-1	-4	μA
0	In most O - m - nit - m - n	Differential Mode		0.5		pF
C _{IN}	Input Capacitance	Common Mode		0.6		pF
Б	Innut Desistance	Differential Mode		4		kΩ
R _{IN}	Input Resistance	Common Mode		0.3		ΜΩ
Av	Open-Loop Voltage Gain		64	70		dB
.,	Common-mode input range		4.4	4.6		V
VIH	V _{IH} (high)	T _A = -40°C to 125°C		4.3		V
V	Common mode investment (1)			1.1	1.3	V
V _{IL}	Common-mode input range (Low)	T _A = -40°C to 125°C		1.3		V
CMRR	Common Mode Rejection Ratio	V _{CM} = ±0.5 V referred to midsupply	75	123		dB

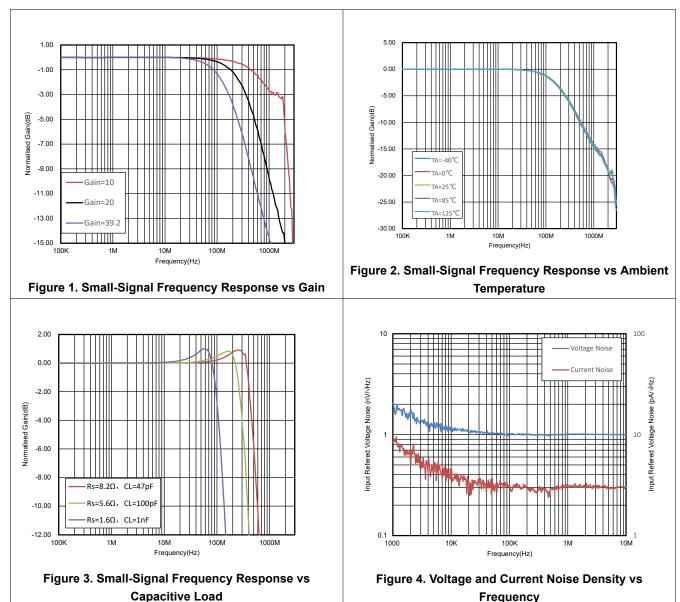
www.3peak.com 6 / 18 AA20231203A0

Electrical Characteristics (continued)

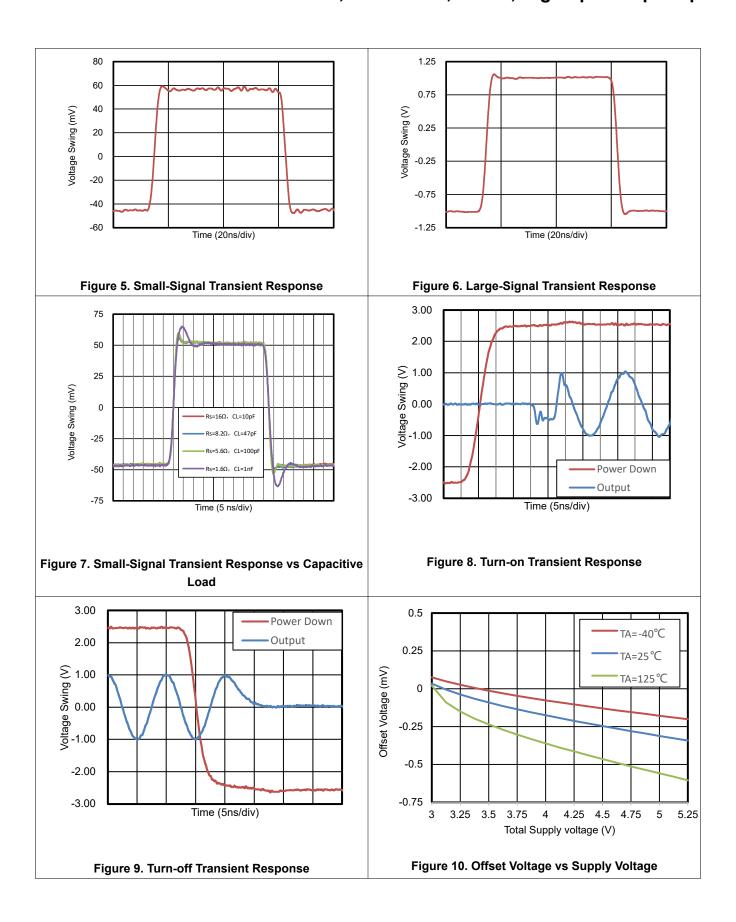
All test conditions: V_S = 5 V, T_A = 25°C, R_L = 10 k Ω , unless otherwise noted.

	Parameter	Conditions	Min	Тур	Max	Unit
Output (Characteristics					_
		I _{OUT} = 10 mA		0.9	1.1	V
	Output Voltage Swing from	I _{OUT} = 10 mA, T _A = -40°C to 125°C			1.2	V
	Positive Rail	V _S = 3.3 V, I _{OUT} = 10 mA		0.9	1.1	V
		V _S = 3.3 V, I _{OUT} = 10 mA, T _A = -40°C to 125°C			1.2	V
		I _{OUT} = 10 mA		1.05	1.15	V
	Output Voltage Swing from	$I_{OUT} = 10 \text{ mA}, T_A = -40^{\circ}\text{C to}$ 125°C			1.2	V
	Negative Rail	V _S = 3.3 V, I _{OUT} = 10 mA		1.05	1.15	V
		V _S = 3.3 V, I _{OUT} = 10 mA, T _A = -40°C to 125°C			1.2	V
	0.1.101.10: 30.	V _S = 5 V, Source	45	85		mA
I _{SC}	Output Short-Circuit Current	V _S = 5 V, Sink	55	120		mA
AC Spec	cifications					
SSBW	Small-signal Bandwidth	V _{OUT} = 100 mV _{PP}		2.3		GHz
LSBW	Large-signal Bandwidth	V _{OUT} = 2 V _{PP}		866		MHz
GBW	Gain-Bandwidth Product			8		GHz
SR	Slew Rate	V _{OUT} = 3 V step		2700		V/µs
t _{OR}	Overload Recovery	2x output overdrive		2.8		ns
4	Settling Time, 0.1%			3.2		ns
ts	Settling Time, 0.001%			2600		ns
Noise Po	erformance			_		
e _N	Input Voltage Noise Density	f = 1 MHz, V _{CM} = 1 V		1.1		nV/√Hz
i _N	Input Current Noise	f = 1 MHz		3.1		pA/√Hz
HD2	Second-order Harmonic	f = 10 MHz, V _{OUT} = 2 V _{PP}		83		dBc
HD2	Distortion	f = 100 MHz, V _{OUT} = 2 V _{PP}		65		dBc
LIDO	Third and a Hammania Distantian	f = 10 MHz, V _{OUT} = 2 V _{PP}		86		dBc
HD3	Third-order Harmonic Distortion	f = 100 MHz, V _{OUT} = 2 V _{PP}		74		dBc
PD Perfe	ormance					
		Amplifier OFF below this voltage	8.0	0.9		V
	Disable Voltage Threshold	Amplifier OFF below this voltage, $T_A = -40$ °C to 125°C	0.7			V
	Enable Voltage Threshold	Amplifier ON above this voltage		1.1	1.2	V

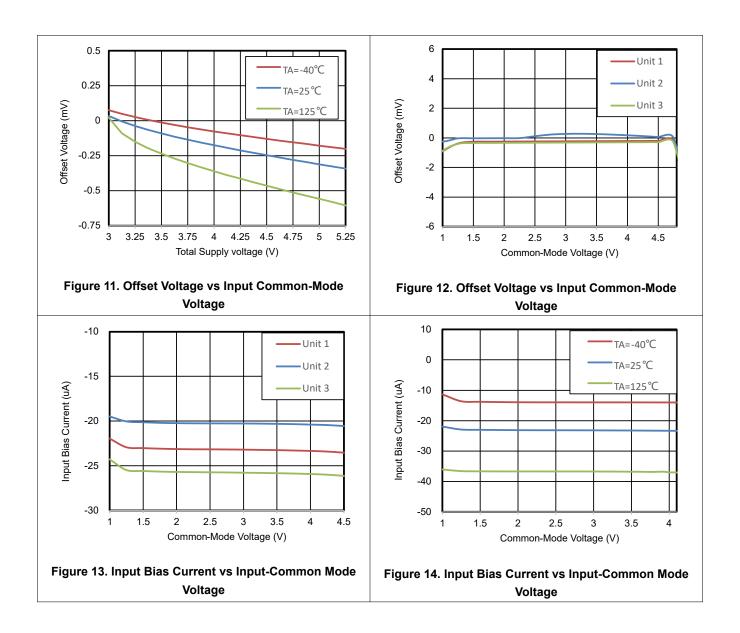
www.3peak.com 7 / 18 AA20231203A0


Parameter	Conditions	Min	Тур	Max	Unit
	Amplifier ON above this voltage, T _A = −40°C to 125°C			1.3	V
Power-down Quiescent Current			224	255	μA
Input DD bigg Current			67	77	μA
Input PD bias Current	$T_A = -40^{\circ}C$ to 125°C			82	μA
Turn-on Time Delay	Time to V_{OUT} = 90% of final value		17		ns
Turn-off Time Delay			86		ns

www.3peak.com 8 / 18 AA20231203A0


Typical Performance Characteristics

All test conditions: T_A = 25°C, V_{S^+} = 2.5 V, V_{S^-} = -2.5 V, V_{IN^+} = 0 V, R_F = 453 Ω , Gain = 7 V/V, R_L = 200 Ω , and output load referenced to midsupply, unless otherwise noted.



www.3peak.com 9 / 18 AA20231203A0

www.3peak.com 11 / 18 AA20231203A0

Detailed Description

Overview

The TPH2861 is a BJT, high-speed, voltage-feedback operational amplifier designed for high-speed pulse ,high-speed data acquisition systems and other applications. It is available as a single op amp. The amplifier features an 8-GHz gain bandwidth, $2700\text{-V/\mu}s$ slew rate and broad voltage noise of 1.1 nV / $\sqrt{\text{Hz}}$, but it is not unity-gain stable and can be stable when the gain is larger than 7 V/V. The TPH2861 power-supply range of +3.3 V to +5.25 V (\pm 1.65 V to \pm 2.625 V).

Functional Block Diagram

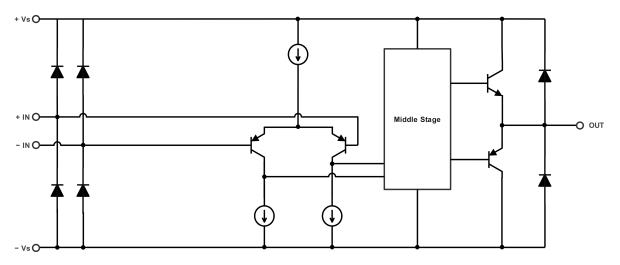


Figure 15. Functional Block Diagram

Feature Description

Operating Voltage

The TPH2861 is designed for single supply operation from 3.3 V to 5.25 V or dual supply operation from ±1.65 V to ±2.625 V.

www.3peak.com 12 / 18 AA20231203A0

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

Transimpedance Amplifier Application

Figure 16 shows the TPH2861 is configured in a Transimpedance amplifier application. Transimpedance amplifier (TIA) is a current to voltage converter. In the circuit shown in the following figure, the current source (shown as a photodiode) is connected between ground and the inverting input of the op-amp. The other input of the op-amp is also connected to ground. This provides a low-impedance load for the photodiode, which keeps the photodiode voltage low. The current of the photodiode is equal to the feedback current through R_F due to the high gain of the op-amp. The DC gain of a transimpedance amplifier is determined by the equation shown in the Figure 16. The CF is used to maintain the stability of the whole circuit via creating a zero.

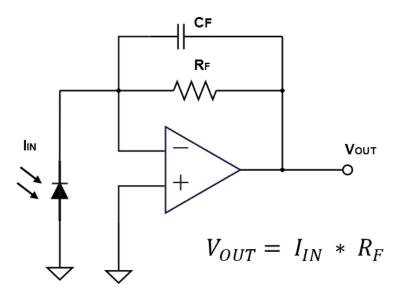
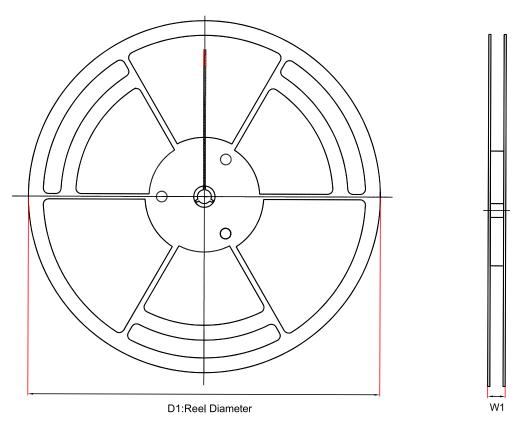
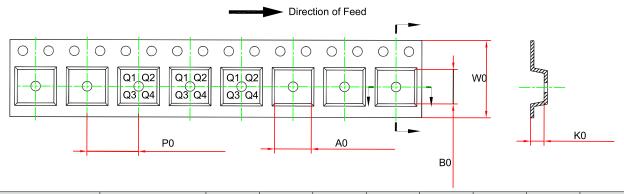


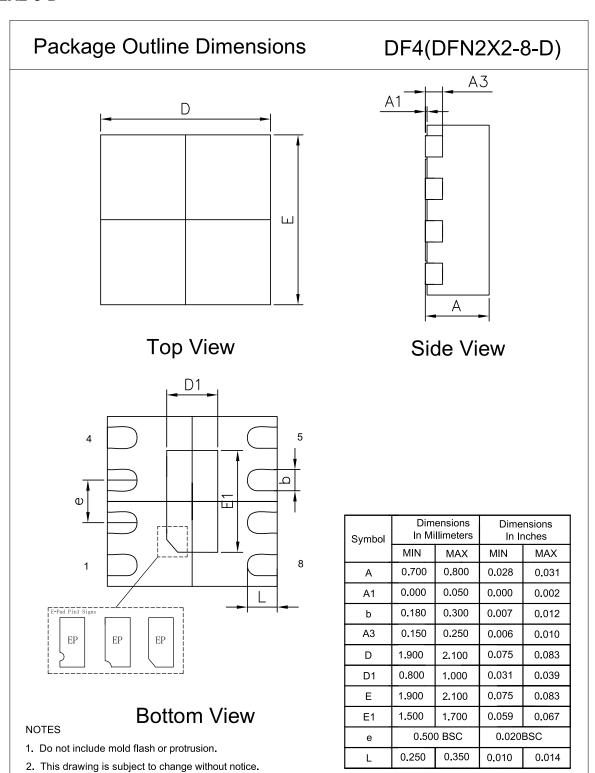
Figure 16. TIA(transimpedance amplifier) Application


Power Supply Recommendations


Place 0.1-µF bypass capacitors close to the power supply pins for reducing coupling errors from the noisy or high-impedance power supplies.

www.3peak.com 13 / 18 AA20231203A0

Tape and Reel Information


Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPH2861-DF4R-S	DFN2X2-8	180	12.5	2.3	2.3	1.1	4	8	Q2

www.3peak.com 14 / 18 AA20231203A0

Package Outline Dimensions

DFN2X2-8-D

3. The many types of E-pad Pin1 signs may appear in the product.

Order Information

Order Number	Operating Temperature Range	Package	Package Marking Information MSL		Transport Media, Quantity	Eco Plan
TPH2861-DF4R-S	−40 to 125°C	DFN2X2-8	A25	MSL2	Tape and Reel,3000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 16 / 18 AA20231203A0

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2023. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 17 / 18 AA20231203A0

This page intentionally left blank

www.3peak.com 18 / 18 AA20231203A0