

Features

- Compatible with 802.3af Specifications
- 100-V 0.56-Ω PD Input MOSFET
- Active Clamp Primary-Side Regulated (PSR) Flyback without Aux-winding
- Active Clamp Secondary-Side Regulated (SSR) Flyback through Opto-coupler
- 0.36-Ω and 0.78-Ω Integral Flyback MOSFETs
- Programmable up to 650-kHz Frequency
- 1.5-A Switching Current Limit
- Output Diode Compensation in PSR Mode
- Programmable Soft-Start Time
- Frequency Foldback during Startup and Protection
- Maintain Power Signature in Light Load (TPE15017)
- EMI Reduction with Frequency Dithering
- Hiccup OLP, OVP, and OTP Protection
- Operating T_J Temperature Range from -40° C ~ +125°C
- Available in 3×4 19-pin QFN Package

Applications

- IEEE 802.3af-Compliant Devices
- Security Camera
- VoIP Phones
- WLAN Access Points
- IoT Devices

Description

The TPE1501x (TPE15017 or TPE15018) is a monolithic power over ethernet (PoE) powered devices (PD) with integrated PD interface and fly-back power converter. The device supports IEEE 802.3af standard interface and targets for small-size 13-W isolated PoE applications.

The PD interface has all the functions of IEEE 802.3af, including detection, classification, inrush current, operation current limit, and 100-V hot-swap MOSFET.

To achieve small size and high-switching frequency, the TPE1501x fly-back converter is specifically designed with active clamp primary-side regulation (PSR) fly-back topology. TPE1501x can also be set in secondaryside regulation (SSR) active clamped fly-back topology, which can get best regulation through opto-coupler from secondary side.

The TPE15017 automatically sinks 15-mA pulse current as the maintain power signature (MPS) in light load condition to maintain the connection with the PSE equipment and turns off the MPS current when the load current is above the MPS threshold. The TPE15018 disables the MPS function.

The TPE1501x is available in 3mm x 4mm QFN-19 package.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	6
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	11
Detailed Description	18
Overview	18
Functional Block Diagram	18
Feature Description	18
Application and Implementation	26
Application Information	
Typical Application	26
Application Examples	
Layout	30
Layout Guideline	30
Layout Example	30
Tape and Reel Information	31
Package Outline Dimensions	32
QFN3X4-19	32
Order Information	33
IMPORTANT NOTICE AND DISCLAIMER	34

Product Family Table

Part Number	MPS Function
TPE15017	Enabled
TPE15018	Disabled

Revision History

Date	Revision	Notes
2024-5-13	Rev.A.0	Initial Release
		Added MPS feature description for the TPE15017
2025-6-12	Rev.A.1	Added the device TPE15018 with the MPS function disabled
		Added the isolated buck converter application example

Pin Configuration and Functions

TPE1501x

Table 1. Pin Functions: TPE1501x

Pin			Description
No.	Name	1/O/P	Description
1	VDD	Р	Positive power supply from PoE input power rail.
2	СР	0	Charge-pump output for hot-swap MOSFET driver power supply.
3	DET	ο	PD detection and power enable pin. Connect a 24.9k Ω resistor between VDD and DET for PoE detection. Pulling DET to ground can disable class function, hot-swap MOSFET and fly-back converter.
4	CLASS	0	Classification pin. Connect a resistor from CLASS to AGND to program the classification current.
5	M/D	0	Feedback MODE and dither function select pin. Refer to "Table 2" for the detail function setting.
6	FSW	0	Switching Frequency Set Pin. An external resistor from this pin to AGND sets the switching frequency.
7	SS	0	Soft-start and hiccup period control pin. Connect one capacitor between the SS pin and AGND. The SS pin controls the FB ramp slew-rate in PSR mode and controls the COMP ramp slew rate in SSR mode. The SS pin also controls the hiccup protection period.

Р	in		Description		
No.	Name	1/O/P	Description		
8	COMP	I/O	Feedback loop control pin. The COMP pin is the output of the feedback error amplifier for PSR mode and the feedback input pin for SSR mode.		
9	VDIODE	Ο	Compensation pin for the output rectifier diode voltage drop. A resistor between the VDIODE pin and AGND compensates the output voltage for different switching current.		
10	VCC	Ρ	DCDC converter internal circuit power supply pin. The VCC pin is the output of an internal LDO powered from VDD input. Connect more than 2.2μ F capacitor between the VCC pin and AGND for the internal LDO. VCC also can be powered from an external power supply of lower than 6.5 V to eliminate the power loss of the internal LDO.		
11	AGND	GND	Analog signal power ground.		
12	FB	I	Output voltage feedback in PSR mode, and PSR/SSR OVP pin. In PSR mode, connect one resistor from SW pin to FB pin to regulate the output voltage. In SSR mode, the internal EA is disabled, and output voltage signal is feedback from the COMP pin, connect one resister FB to SW can set the OVP threshold, or float FB pin if OVP function isn't required.		
13	BST	I	Bootstrap power supply for the high-side MOSFET driver. Connect one 0.1μ F capacitor between the BST pin and the SW pin.		
14	SW	I	Drain of the main MOSFET switch and source of the synchronous active clamp MOSFET switch.		
15, 16	PGND	GND	Power ground of the flyback converter.		
17	SNRB	0	Active clamp snubber capacitor connection pin. It is connected to the drain of internal synchronous MOSFET switch.		
18, 19	VBUS	Р	Source of the PD hot-swap MOSFET. It supplies power for fly-back converter.		

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Мах	Unit
	VDD, VBUS, DET, SW, SNBR	-0.3	105	V
	EP	VBUS -	VBUS+0.	V
Voltage		0.3	2	
range at terminals	СР			V
			VDD+7	
	BST	SW - 0.3	SW+7	V
	All Other Pins	-0.3	7	V
TJ	Maximum Junction Temperature	-40	125	°C
T _A	Operating Temperature Range	-40	85	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±750	V

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Parameter		Min	Тур	Max	Unit
V _{DD}	Power Supply	37		57	V
Vsw	Voltage at the Switching Node			95	V
TJ	Junction Temperature Range	-40		125	°C

Thermal Information

Package Type	θ _{JA}	θ _{JB}	θ _{JC}	Unit
QFN3X4-19L	56.5	13.4	25.5	°C/W

Electrical Characteristics

All test conditions: V_{DD} = 48 V, T_J = -40°C to 125°C, unless otherwise noted. Typical values are at T_J = 25°C. R_{DET} = 24.9 k Ω

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Detection					1	I
V _{DET_ON}	Detection On	V _{DD} rising		0.9	1.3	V
V _{DET_OFF}	Detection Off	V _{DD} falling	10.1	10.7		V
V _{DET_LKG}	DET Leakage Current	$V_{DET} = V_{DD} = 57 V$		0.1	5	μA
ISUPPLY	Supply Current	V_{DD} = 10.1V, float DET pin, not in Mark event			12	μA
	Data dian Orimant	V _{DD} = 2 V	78	81	84	μA
IDET	Detection Current	V _{DD} = 10.1 V	400	410	420	μA
Vdet_th	DET Disable Threshold	Disable functions except detection. Falling edge	2.4	2.9	3.4	V
V _{DET_HYS}	DET Disable Threshold Hysteresis			0.5		V
Classificat	ion			1		
TCLASS	Classification Stability Time			250		μs
V _{CLASS}	Class Output Voltage	13 V < V_{DD} < 21 V, 1 mA < I_{CLASS} < 44 mA	1.11	1.16	1.21	V
	Classification Current	R_{CLASS} = 578 Ω , 13V \leq V _{DD} \leq 21 V	1.8	2	2.4	mA
		R _{CLASS} = 110 Ω, 13 V ≤V _{DD} ≤ 21 V	9.9	10.55	11.3	mA
		R_{CLASS} = 62 Ω , 13 V \leq V _{DD} \leq 21 V	17.7	18.7	19.8	mA
ICLASS		$\begin{array}{l} R_{CLASS}\text{=}~41.2~\Omega,~13~V \leq V_{DD} \leq 21\\ V \end{array}$	26.6	28.15	29.7	mA
		$\begin{array}{l} R_{\text{CLASS}}\text{= }28.7 \ \Omega, \ 13 \ \text{V} \leq \text{V}_{\text{DD}} \leq 21 \\ \text{V} \end{array}$	38.2	40.4	42.6	mA
V _{CLON}	Classification Low Threshold	Regulator turns on, V _{DD} Rising	11.8	12.4	13.0	V
V _{CLON_HYS}	Classification Low Threshold Hysteresis	Low threshold hysteresis		1.0		V
VCLOFF	Classification High Threshold	Regulator turns off, VDD Rising	21.2	22	22.7	V
V _{CLOFF_HYS}	Classification High Threshold Hysteresis	High threshold hysteresis		0.5		V
VMARK_L	Mark Event Reset Threshold		4.5	5.0	5.5	V
Vmark_h	Max Mark Event Voltage		10.8	11.4	12.0	V
I _{MARK}	Mark Event Current		1.0	1.5	2	mA
R _{MARK}	Mark Event Resistance	2-point measure at 5.5 V and 10.1 V, R= Δ V / Δ I	45			kΩ
IIN_CLS	IC Supply Current During Classification	V _{DD} = 17.5 V, CLASS floating		90	150	μA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ICLS_LKG	CLASS Leakage Current	V _{CLASS} = 0 V, V _{DD} = 57 V			1	μA
PD UVLO	- -	- -				
V _{DD_R}	VDD Turn-on Threshold	V _{DD} Rising	36	37.9	40	V
V _{DD_F}	VDD Turn-off Threshold	V _{DD} Falling	30	31	32.5	V
Vdd_hys	VDD UVLO Hysteresis		5	6.9		V
I _{DD_LKG}	Input Leakage Current	V _{DD} = 29.5 V			200	μA
lq	IC Supply Current during Operation	No load, no switching		1.5	1.8	mA
Pass Devi	ce and Current Limit					
R _{ON_PD}	PD MOSFET On Resistance	360-mA load on VBUS		0.56		Ω
I _{PD_LKG}	Leakage Current of PD MOSFET	V _{DD} = 57 V, V _{BUS} = 0 V, DET = low		1		μA
V _{CP}	CP Regulation Voltage			5		V
	PD Current Limit	V_{BUS} drop from V_{DD} , V_{DD} - V_{BUS} = 1 V	350	460		mA
I _{INRUSH}	Inrush Current Limit	V_{BUS} ramps up from low to high, V_{DD} - V_{BUS} = 1 V		115		mA
I _{TERM}	Inrush Current Termination	V _{BUS} Rising		98		mA
t _{DELAY}	Inrush to Operation Mode Delay		80	110		ms
Vfdbk	Current Fold-Back Threshold	V _{BUS} falling, V _{DD} - V _{BUS}		10		V
t _{FDBK}	Fold-back Deglitch Time	V _{BUS} falling to inrush current		1		ms
VBUS OVE	Protection					
V _{CLAMP}	VBUS Maximum Regulated Voltage	V _{CC} = 5 V	57	63	69.5	V
Converter	Power Supply					
V _{BUS_R}	Converter VBUS UVLO Rising Threshold	V_{BUS} starts charging V_{CC}		10		V
V _{BUS_F}	Converter VBUS UVLO Falling Threshold	V_{BUS} stops charging V_{CC}		8		V
Vcc	VCC Regulation Voltage	0 mA to 10 mA load current	4.7	5	5.3	V
V _{CC_R}	VCC UVLO Rising Threshold	V_{DD} is higher than UVLO threshold, V_{CC} rising		4.5		V
V _{CC-F}	VCC UVLO Falling Threshold	V_{DD} is higher than UVLO threshold, V_{CC} falling		4.3		V
V _{SNBR_DIS}	SNBR Discharge Threshold Before Switching	V _{SNBR} - V _{BUS}		1.5		V
I _{SNBR_DIS}	SNBR Discharge Current	Discharge to V _{BUS}		3		mA
Voltage Fe	edback					
I _{FB_REG}	FB Regulation Current	V _{BUS} = 37 V - 57 V, T _J = 25°C	99	100	101	μA

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		$V_{BUS} = 37 \text{ V} - 57 \text{ V}, T_J = -40^{\circ}\text{C}$ to +125°C	98	100	102	μA
V _{FB_OS}	FB to VBUS Offset Voltage	V_{FB} - V_{BUS} , 100- μ A current into the FB pin.	-50	0	50	mV
IFB_OVP	FB Feedback OVP Threshold		115	127	139	μA
Error Amp	lifier					
G _{EA}	Error Amplifier Gain	PSR mode, $I_{FB} = I_{FB_REG} \pm 5 \ \mu A$, V _{COMP} = 1.5 V		14		μΑ/μΑ
ISOURCE	Amplifier Maximum Source Current	PSR mode, V _{COMP} = 1.5 V, I _{FB} = 90 μA		-110		μA
Isink	Amplifier Maximum Sink Current	PSR mode, V _{COMP} = 1.5 V, I _{FB} = 110 μA		110		μΑ
N		PSR mode, I _{FB} = 90 μA		3.5		V
VCLMP_H	COMP High voltage	SSR mode, float COMP		3.5		V
R _{PULLUP}	COMP Pull-up Resistor	SSR mode	8	10.3	13	kΩ
IPULLUP	COMP Pull-up Bias Current	SSR mode	80	96	115	μA
PSR Mode	Regulation Compensation			1	I	
Gd_comp	VDIODE Compensation Gain	LS-FET current to VDIODE voltage gain		0.8		V/A
Switching	MOSFET				•	
R _{ON_LS}	Low-side Switching MOSFET			0.36		Ω
R _{ON_HS}	High-side Switching MOSFET			0.78		Ω
ILS_LKG	Low-side FET Leakage Current	V _{SW} = 100 V		0.1	10	μA
I _{HS_LKG}	High-side FET Leakage Current	$V_{BUS} - V_{SW}$ = 100 V		0.1	10	μA
M/D Pin Se	etting			1	1	
I _{MD_DET}	MODE/Dither Pin Detection Current		85	100	115	μA
t_{MD_DET}	MODE/Dither Detection Period			160		μs
		Voltage level 1 range			0.1	V
	MODE/Dither Pin Detection	Voltage level 2 range	0.5		0.95	V
V MD_DET	Threshold Voltage	Voltage level 3 range	1.15		1.95	V
		Voltage level 4 range	2.15			V
Frequency	/ Dither					
f _{DITH} ⁽¹⁾	Dither Frequency Range			±7%		f _{SW}
f _{MOD} ⁽¹⁾	Dither Modulation Frequency			12.5		kHz
OLP, SCP,	OVP Protection	1		1	I	
I _{LS_LIMIT}	LS FET Switching Current Limit		1.35	1.5	1.65	А
I _{SCP}	SCP Limit			2.1		Α

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
I _{HS_LIMIT}	HS FET Negative Current Limit	SNBR to SW	-1.0	-0.8	-0.6	А	
Iss	SS Charge Current			50		μA	
Iss_ovld	SS Discharge Current during Overload			20		μΑ	
ISS_PRO	SS Discharge Current during Protection			2		μΑ	
Vss	SS Charged Threshold Voltage			3.5		V	
VSHDN	Overload Shutdown Threshold Voltage			3		V	
V _{RST}	Protection Reset Threshold Voltage			0.2		V	
V _{SNBR_OV}	SNBR Pin Over-Voltage Threshold			105		V	
Switching	Frequency				•		
<i>c</i>	Switching Frequency	R _{sw} =9.31 kΩ	450	500	550	kHz	
ISW		R _{sw} = 18.7 kΩ	215	250	285	kHz	
fsw_fdbk	Fold-back Frequency	$V_{SS} = 0 V \text{ or } V_{FB} = 0 V.$		76		kHz	
t _{MIN_ON}	Minimum On Time			200		ns	
t _{MIN_OFF}	Minimum Off Time		350	475	560	ns	
D _{MAX}	Maximum Duty Cycle	f _{sw} = 500 kHz		74		%	
Thermal Protection							
T _{SD}	Thermal Shutdown Protection Threshold	T _J rising		150		°C	
T _{SD_HYS}	Thermal Shutdown Hysteresis	$T_{\rm J}$ falling below $T_{\rm SD}$		20		°C	

(1) Guaranteed by design and sample characterization. Not tested in production.

Typical Performance Characteristics

All test conditions: V_{DD} = 48V, V_{OUT} = 12V, TJ = 25°C, unless otherwise noted.

Detailed Description

Overview

The TPE1501x is a monolithic power over ethernet (PoE) powered device (PD) with integrated PD interface and fly-back power converter. The power converter can be set in active clamp PSR flyback mode and active clamp SSR flyback mode. The TPE1501x supports IEEE 802.3af standard interface and targets for small size 13-W isolated PoE applications. The TPE1501x can also supports IEEE 802.3at PSE at class 4 level for those applications requiring high peak power above 13 W within short time.

Figure 39 shows the internal block diagram of the TPE1501x. The following sections describe the detail functions.

Functional Block Diagram

Figure 39. Functional Block Diagram

Feature Description

Detection

In order to identify a device as a valid PD, the Power Sourcing Equipment (PSE) senses the Ethernet connection by applying two voltages in a range of 2.7 V to 10.1 V on the Ethernet cable and measuring the corresponding currents. An equivalent

resistance is calculated using the $\Delta V/\Delta I$. During the detection phase, a valid signature resistance between 23.7 k Ω and 26.1 k Ω must be seen from the power interface (PI). Thus, a 24.9-k Ω resistor is recommended between the VDD pin and DET pin to respond the PSE detection.

The DET pin also controls the enable function of the TPE1501x except detection. By pulling the DET pin low, the TPE1501x disables classification, hot-swap MOSFET, power maintain signature and flyback switching. This function can be used to disable flyback converter when an auxiliary adaptor power supply is available on the output of the flyback converter.

Classification

In the classification mode, the PSE will classify the PD for one of five power levels or classes. This allows the PSE to efficiently manage power distribution so that the PSE can support as many loads as it can within its maximum current capability. IEEE802.3af classification mode is active when the PSE presents a fixed voltage between 14.5V and 20.5V to the PD. Then the TPE1501x presents a load current in classification mode as showing in Table 2. The current is measured by the PSE to determine which of the five available classes is advertised.

Class	Max. Power to PD (W)	Classification Current (mA)	R _{CLASS} (Ω)
0	12.95	2	578
1	3.84	10.55	110
2	6.49	18.7	62
3	12.95	28.15	41.2
4	25.5	40.4	28.7

Table 2. CLASS Resistor Selection

Maintain Power Signature (TPE15017 Only)

The TPE15017 provides maintain power signature (MPS) to the PSE in light load condition but the TPE15018 doesn't. When the load current is less than typical 45 mA, the TPE15017 automatically draws continuous 15-mA pulse current for 100 ms with 300-ms period time. This continuous pulse current keeps the PD connecting to the PSE in light load conditions such as the PD side is in standby mode.

PD UVLO and Current Limit

Once the classification is successfully completed, the PSE will rise its output voltage. When VDD voltage is higher than the turn-on threshold, the hot-swap MOSFET switch will start pass a limited current I_{INRUSH} to charge the bulk capacitor at the VBUS pin until the voltage across the hot-swap switch is sufficiently low and the charge current drops to lower than 80% of the inrush current limit. Then the current limit changes to normal operation current limit threshold.

After the 100-ms delay time (T_{DELAY}) from the UVLO starting, the TPE1501x will assert one internal enable signal and go from the startup mode to the running mode after the inrush period elapses, the internal enable signal can enable flyback converter internally.

If the VDD voltage drops below the falling UVLO threshold, the input MOSFET and the DCDC flyback converter both are disabled.

If the output current overloads on the input hot-swap MOSFET, the current limit works and the VBUS voltage drops. When the voltage drop across the VDD pin and the VBUS pin is more than 10V for longer than 1 ms, or the VBUS voltage drops to 15V, the current limit reverts to the inrush limit, and the internal enable signal is pulled down to disable DCDC switching at the same time. Then The TPE1501x works in a new inrush current limit cycle. In this condition, internal enable signal doesn't have 100ms delay time (T_{DELAY}).

The following figure shows the current limit and internal EN signal work sequence during startup from PSE power supply.

Figure 40. Startup Sequence

VBUS over Voltage Clamp

Except the current limit function, the PD input hot-swap MOSFET can also protect the V_{BUS} from surge voltage from V_{DD} . If the V_{BUS} voltage is charged higher than 63 V, the input MOSFET will be regulated to keep the V_{BUS} voltage at 63 V.

DCDC Converter Startup and Power Supply

The TPE1501x DCDC converter has an internal startup circuit. When the VBUS voltage is higher than the VBUS UVLO rising threshold, the capacitor at the VCC pin is charged through an internal LDO. The V_{CC} voltage is regulated at 5.0V. The internal reference circuit is enabled once the V_{CC} voltage is above its UVLO rising threshold.

When both V_{BUS} and V_{CC} are at high level, and the SNBR voltage is closed to the VBUS voltage, the internal enable signal from the PD controller will enable the DCDC converter. The DCDC converter starts switching and regulates the isolated output.

Flyback Work Mode Detection

The TPE1501x supports active clamp flyback control in both primary-side regulate mode (PSR) and secondary-side regulate mode (SSR). After startup, The TPE1501x detects the M/D pin voltage and latches the work mode. After work mode detection, The TPE1501x can't change the work mode any more unless the flyback converter is disabled due to the VCC toggling.

In PSR mode, the V_{OUT} feedback signal is detected from the SW voltage through the FB pin without opto-coupler or aux-winding. In SSR mode, the V_{OUT} feedback signal is detected through the COMP pin directly by an external TL431 and an opto-coupler. In both modes, the frequency keeps constant and won't run into sleep mode in light load condition. Which can avoid any audible noise issues from transformer.

PWM Operation

The TPE1501x integrates two MOSFET switches for active clamp flyback design. In each cycle, the low-side MOSFET turns on at the beginning, forcing the current in the transformer to increase, the current through the low side MOSFET is internally sensed. When the sum of sensed current signal and slope compensation signal touches the voltage set by the COMP pin, the low side MOSFET turns off. The transformer current then transmits energy from primary-side winding to secondary-side winding, and charges output capacitor through the schottky diode. At the same time, the high-side MOSFET turns on once the low side MOSFET turns off, providing a clamp loop for the energy in transformer leakage inductance. During the high side MOSFET on period, the energy in transformer leakage inductance can be absorbed by the clamp cap at the SNBR pin, and then the capacitor energy can be discharged back to the output through transformer at the same cycle, finally keep the clamp capacitor voltage in balance in each cycle.

The current of the transformer's primary-side winding is controlled by the COMP voltage. In PSR mode, the COMP voltage is controlled by the output feedback voltage at the FB pin. In SSR mode, the COMP voltage is controlled by the output feedback voltage through an opto-coupler and TL431. Thus the output voltage controls the transformer current to meet the load demand.

One 4.7-µF capacitor is recommended on the SNBR pin to clamp the transformer leakage inductance energy, or else the SW and SNBR pins' voltage may run to high voltage. In case the TPE1501x stops switching due to the UVLO or other protections, both the high side MOSFET and the low side MOSFET keep off.

Voltage Control PSR MODE

Unlike the traditional flyback with opto-isolator feedback, the TPE1501x can detect the transformer primary winding voltage (V_{SW}-V_{BUS}) from the FB pin during the secondary-side output diode conduction period.

Assume the secondary winding is the master, and the primary winding is the slave. When the secondary-side diode conducts, primary winding voltage is:

$$V_{PRI} = \frac{N_P \times (V_{OUT} + V_D)}{N_S}$$
(1)

The TPE1501x senses the primary side winding voltage through the FB pin, which generates one feedback current I_{FB} through the resistor:

$$I_{FB} = \frac{V_{PRI}}{R_{FB}}$$
(2)

Where:

IFB is the feedback current, it is 100uA

 V_{D} is the output diode forward-drop voltage

 V_{OUT} is the output voltage

V_{PRI} is transformer primary winding voltage

 N_{P} and N_{S} are the turns of the primary winding and output winding, respectively

 R_{FB} is the resistor from the SW pin to the FB pin.

Figure 41. FB Feedback Control

The TPE1501x samples the primary side winding voltage after the low side MOSFET turns off. Blanking time is added to avoid SW rising edge affection. To guarantee long enough FB sensing period, the TPE1501x has a minimum low side MOSFET off time, which also limits the maximum duty cycle when the switching frequency is high.

During FB sensing period, the FB signal is sent into the negative input of the error amplifier and held after the sense window is close.

SSR MODE

The TPE1501x can also be set as SSR flyback mode. In SSR mode, the V_{OUT} voltage signal feedback to COMP pin through one opto-coupler and TL431. The internal error amplifier is disable. The FB pin is only used for OVP protection.

Output Voltage Compensation

3PEAK

In PSR mode, the primary-side winding voltage reflects the secondary-side winding voltage with transformer turns ratio. However, the output voltage differs from the output winding voltage due to the output rectifier diode voltage drop and the power winding resistance. The dropout voltage varies when the conducted current changes. The TPE1501x has a VDIODE pin which can be used to compensate the dropout voltage when current varies.

The TPE1501x senses the low side MOSFET current when it is on, and then hold the current signal when the low side MOSFET is off. By filtering the current signal, the TPE1501x controls a current sinking from the FB pin based on the sensed low side MOSFET current in each cycle. Different resistor on the VDIODE pin sets the different sinking current from the FB pin, which is determined by Equation 3.

$$I_{FB_COMP} = \frac{I_{IN} \times G_{D_COMP}}{D \times R_{VDIODE}}$$

Where:

 I_{FB_COMP} is the expected compensation current into the FB pin

 $I_{\mbox{\scriptsize IN}}$ is the average input current

 G_{D_COMP} is the VDIODE compensation gain

D is the duty cycle

 R_{VDIODE} is the resistance between the VDIODE pin and ground

The FB sinking current leads to voltage drop on feedback resistor between the SW and the FB pin so that it compensates the V_{OUT} voltage when load varies.

In SSR flyback mode, this voltage compensation function is disabled.

(3)

Dual Triangle Frequency Dithering Function

The TPE1501x supports frequency dithering function by different M/D pin settings. During startup, the TPE1501x outputs 100µA current to M/D pin to detect the resistor setting after the VCC voltage is ready. Refer to Table 3 for detail.

The M/D pin detection current lasts about 200 µs. Normally one resistance from the M/D pin to AGND is good enough. In noise environment, it may need a capacitor from the M/D pin to AGND to provide filtering. The capacitor should be less than 100 pF so that the M/D pin voltage can rise to steady state before the TPE1501x detects it.

Pi	n to GND Resistance (k	MODE	Dither Function		
MIN	TYP. (1%)	MAX	MODE	Dimer Function	
0	0	0.82	PSR	Yes	
6.2	6.8	7.68	PSR	No	
13.7	15	16.2	SSR	No	
24.9	Float	Float	SSR	Yes	

Table 3. M/D Function Setting

Dual Triangle spread spectrum combines a low frequency triangular modulation profile with a high frequency triangular modulation profile. The modulation frequency of the low frequency triangular modulation is about 12.5 kHz. The modulation frequency of the high frequency triangular modulation is about 100 kHz. Figure 42 shows the frequency dithering range.

Figure 42. Dual Tri-angular Switching Frequency Dithering

Overload Protection

The TPE1501x senses the low side MOSFET current in each switching cycle. When the low side MOSFET current trips the current-limit threshold, the TPE1501x turns off the low side MOSFET for this switching cycle until the internal oscillator starts the next cycle. The TPE1501x has cycle-by-cycle over current protection (OCP).

If the load current continues increasing after triggering OCP, the output voltage will decrease, and the peak current will trigger switching limit every cycle. The TPE1501x sets overload protection (OLP) by continuously monitoring the low side MOSFET current.

Once the SS voltage is charged to 3.5 V after start-up (soft start complete), the OLP protection is enabled. If an OCP signal is detected, the soft start charging current is disabled and one over current discharge source is enabled, the SS voltage drops with the rate of 20-µA current. At the same time, a 50-µs one-shot timer is activated and it remains active for 50 µs after

the OCP condition stops. The 20- μ A discharge source current cannot be turn off until the one-shot timer becomes inactive. When the OCP disappears before at least 50 μ s prior than the SS capacitor discharging to 3 V, the TPE1501x will run back to normal work condition and the SS capacitor will be re-charged to 3.5 V with 50- μ A current. When the SS capacitor is discharged to 3 V, the TPE1501x will register it as overload condition and turn off the switching MOSFETs until next re-start cycle. At the same time, the 20- μ A discharge current changes to 2- μ A. After the SS voltage is discharged to 0.2 V, the TPE1501x will re-start up with new soft-start cycle. This is hiccup mode protection.

The OLP detection function is disabled after the SS voltage is discharged to be lower than 3V and it will be re-enabled after SS voltage is recharged to 3.5 V. So the OLP only occurs after the soft-start is completed.

Short Circuit Protection (SCP)

When the output is shorted to the ground, the TPE1501x works in OCP mode and current is limited cycle-by-cycle. The device may run into OLP protection. However, when the peak current cannot be limited by cycle-by-cycle limit due to minimum on time, the current may run out of control and the transformer may run into saturation. If the monitored low side MOSFET current reaches SCP threshold, the part will turn off switching MOSFETs and run into hiccup protection immediately by discharging the SS capacitor with 2-µA current. The device will also restart up when the SS voltage is discharged to 0.2V.

During the SCP condition, when the low side MOSFET current does not reach the SCP threshold, but the high side MOSFET negative current is higher than the high side MOSFET negative current limit, the TPE1501x also runs into hiccup mode and discharge the SS capacitor with 2-µA current until 0.2 V.

Over-voltage Protection (OVP)

The TPE1501x has output over-voltage protection (OVP) in both PSR and SSR mode by sensing the current into the FB pin. When the feedback current into the FB pin exceeds 125 percent of I_{REF} , the TPE1501x shuts off the switching, and enters hiccup mode immediately by discharging the SS capacitor with 2-µA current. The device will also restart up after the SS voltage is discharged to 0.2 V.

To avoid the mis-trigger due to the oscillation of the leakage inductance and the parasitic capacitance, the OVP sampling has a T_{OVPS} blanking time.

The TPE1501x also monitors the SNBR pin for maximum over voltage protection. Once the SNBR pin voltage exceeds 105V, TPE1501x turns off all switching, and then discharges the SS to 0.2 V and discharge the SNBR voltage to the VBUS voltage before re-start again.

Soft Start

The TPE1501x provides soft start by charging an SS pin capacitor with a current source. During soft-start period, the SS voltage ramps up slowly. The soft-start capacitor is discharged completely in normal shutdown, thermal protection or other protection conditions.

In PSR mode, the SS signal clamps the feedback voltage until meeting reference voltage. In SSR mode, the SS signal clamps the COMP voltage until the level meeting the switching current. Then SS signal ramps up with the same rate reaching to 3.5 V. The SS time is controlled by the capacitor on the SS pin.

During soft start period, the switching frequency is fold-back when SS is low, refer to the Switching Frequency section for more detail.

Switching Frequency

The switching frequency of the TPE1501x is set by an external resistor between the FSW pin and AGND. The resistor value can be calculated by Equation 4.

$$R_{SW} = \frac{4650}{f_{SW}}$$

Where :

(4)

 R_{SW} is the frequency setting resistor in k Ω .

fsw is the expected frequency in kHz.

The TPE1501x works with this switching frequency in full load range. The device doesn't decrease frequency in no load condition. Generally, the switching frequency is set between 80 kHz to 650 kHz per application demand.

The TPE1501x has frequency fold-back function during soft-start, which prevents transformer saturation when the low side MOSFET reaches minimum on time condition. The fold-back frequency is 80k when the SS voltage is below 0.2 V. The switching frequency increases slowly to normal frequency with the SS voltage rising. After soft start completes, the frequency fold-back function is disabled.

BST Power Supply

The TPE1501x integrates both low side MOSFET and high side MOSFET for active clamp topology. The high side MOSFET driver is supplied by the BST pin. During startup, the BST pin is charged up by an internal charge-pump from CP pin. During stead state switching mode, the BST capacitor can be charged up by VCC when the low side MOSFET turns on.

Minimum On Time and Minimum Off Time

The transformer's parasitic capacitance induces a current spike on low-side power MOSFET when it turns on. The TPE1501x includes a leading-edge blanking period to avoid falsely terminating the switching pulse. During this blanking period, the current sense comparator is disabled and the switching power MOSFET can not switch off.

The TPE1501x also limits the minimum off time to ensure the primary side feedback loop can work well. Refer to the Voltage Control section for detail.

Thermal Protection (OTP)

Thermal shutdown is implemented to prevent the chip from thermally running away. When the silicon die temperature is higher than its upper threshold, the TPE1501x shuts down the whole chip including the PD controller and the DCDC converter.

When the temperature is lower than its lower threshold, the OTP cool down timer counts out and the SNBR voltage is discharged to close to VBUS, the chip is enabled again with a new start-cycle.

Application and Implementation

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Note

Application Information

The TPE1501x is designed for PoE PD applications with 48-V input voltage. It integrates all PD detection, classification functions and flyback converter.

Typical Application

Figure 43. TPE1501x 48 V to 12 V Flyback Application Circuit

Detection Resistor

In the Detection Mode, a resistor connected between the DET pin and the VDD pin is needed as a load to the PSE. The resistance is calculated as a $\Delta V/\Delta I$, with an acceptable range of 23.7 k Ω to 26.1 k Ω . Use a typical value of 24.9k Ω as detection resistor.

Classification Resistor

In order to distribute power to as many loads as possible from PSE, a resistor between the CLASS and AGND pins is used to classify the PD power level. The TPE1501x draws a fixed current set by classification resistor. The supplied power to PD set by classification resistor is shown in Table 2. Typical voltage on the CLASS pin is low, so it only produces a little power loss on class resistor even in the class 4 range.

Protection TVS

To limit input transient voltage within the absolute maximum ratings, a TVS across the rectified voltage (V_{DD} - V_{SS}) must be used. A SMAJ58A, or equivalent, is recommended for general indoor applications. Outdoor transient levels or special applications require additional protection.

PD Input Capacitor

An input bypass capacitor (from VDD to VSS) of 0.05µF to 0.12µF is needed for IEEE 802.3af standard specification. Typically a 0.1-µF, 100-V ceramic capacitor is used.

Output Voltage Setting

The TPE1501x has two feed-back Mode, PSR and SSR.

In PSR mode, TPE1501x senses the primary side winding voltage through the FB pin, the output voltage can be calculated as blew:

$$V_{OUT} = \frac{I_{FB} \times R_{FB}}{N_P} \times N_S - V_D$$
(5)

Where

V_{OUT} is the output voltage.

 R_{FB} is the SW to FB resistance.

 I_{FB} is the feedback current, it is 100 $\mu A.$

V_D is the output diode forward-drop voltage.

 N_P and N_S are the turns of the primary winding and output winding, respectively.

In SSR Mode, the output voltage is set by an external TL431, suppose the TL431's reference voltage is 2.5 V, and expected output voltage is 12 V, the upper and lower divider resister ratio is 3.8. Then the TL431 generates an amplified signal and controls the COMP pin of the TPE1501x through an opto-coupler, such as PC357. COMP controls the current, and then the output voltage is regulated based on the feedback signal.

Work Mode/Frequency Dithering Setting

After enabled, the TPE1501x outputs a current to the M/D pin to detect the M/D resistance. Table 3 shows the programming options.

Selecting Transformer

A transformer is important in a fly-back converter since it determines the duty cycle, peak current, efficiency, MOSFET, output diode rating, and so on.

The transformer winding ratio determines the duty cycle. Calculate the duty with Equation 6.

$$D = \frac{N \times V_{OUT}}{N \times V_{OUT} + V_{IN}}$$
(6)

Where:

D is the duty cycle.

N is the transformer primary winding to output winding ratio. For this typical application, 2:1 winding ratio for 12-V output matches the SW voltage rating.

The primary-side inductance affects the input current ripple ratio factor. A high inductance results in a large transformer size and high cost. A low inductance results in high switching peak current and RMS current, which causes a decrease

in efficiency. Choose a primary-side inductance to make the current ripple ratio factor around $30\% \sim 50\%$. Estimate the primary-side inductance with Equation 7.

$$L_{P} = \frac{V_{IN} \times D^{2}}{2 \times K_{P} \times I_{IN} \times f_{SW}}$$

(7)

Where:

 K_P is the current ripple ratio.

IIN is the input current.

 L_P is the primary inductance.

Calculate L_P based on the minimum input voltage condition.

The transformer should have a high saturation current to support the switching peak current. Otherwise, the transformer inductance decreases sharply.

The current rating counts the max RMS current, which allows flow through each winding. The current density should be controlled. Otherwise, it can cause a high resistive power loss.

VOUT Compensation Setting

The TPE1501x senses the low side MOSFET current when it is on, and controls a current sinking into the FB pin based on the sensed low side MOSFET current in each cycle. Different resistor on the VDIODE pin sets the different sinking current, which is determined by Equation 3.

Selecting Output Diode

The flyback output rectifier diode supplies current to the output capacitor when the primary side MOSFET is off. Use a Schottky diode to reduce losses due to the diode forward voltage and recovery time. The diode should be rated for a reverse voltage 1.5 times greater than the value calculated from Equation 8.

$$V_{DR} = \frac{V_{IN}}{N} + V_{OUT}$$
(8)

The average current rating must exceed the maximum expected load current, and the peak current rating must exceed the output winding peak current.

An R-C snubber circuit for output diode is recommended for better EMI performance.

Input Capacitor Selecting

An input capacitor is required to supply the AC ripple current to the inductor, while limiting noise at the input source. A low ESR capacitor is required to keep the noise to the IC at a minimum. Ceramic capacitors are preferred, and tantalum or low-ESR electrolytic capacitors may also suffice. For ceramic capacitors, the capacitance dominates the input ripple at the switching frequency.

The input ripple can be estimated with Equation 9.

$$\Delta V_{\rm IN} = \frac{V_{\rm IN}}{(V_{\rm IN} + N \times V_{\rm OUT}) \times f_{\rm SW}} \times \frac{I_{\rm IN}}{C_{\rm IN}}$$
(9)

Where

 ΔV_{IN} is the input voltage ripple

IIN is the input current

C_{IN} is the input capacitor.

Output Capacitor Selecting

The output capacitor maintains the DC output voltage. For best results, use ceramic capacitors or low-ESR capacitors to minimize the output voltage ripple. For ceramic capacitors, the capacitance dominates the output ripple at the switching frequency.

The output ripple can be estimated with:

$$\Delta V_{OUT} = \frac{N \times V_{OUT}}{(V_{IN} + N \times V_{OUT}) \times f_{SW}} \times \frac{I_{OUT}}{C_{OUT}}$$
(10)

Application Examples

Non-Isolated PoE PD

The TPE1501x also can be configured as a non-isolated DCDC converter using an inductor. The Figure 44 shows the typical application schematic of -48 V to 12 V converter.

Figure 44. TPE1501x Non-Isolated Application Circuit

PoE PD with Isolated Buck Converter

The TPE1501x can also be configured to an isolated buck converter instead of a fly-back converter as shown in Figure 45. The isolated buck converter lowers the voltage at the SW node so as to reduce the switching power loss. The efficiency is improved, especially at the light load condition.

Figure 45. TPE1501x Isolated-Buck Converter Application Circuit

Layout

Layout Guideline

Efficient layout of the PoE front-end and high frequency switching power supply is critical for stable operation. Poor layout may result in reduced performance, excessive EMI, resistive loss, and system instability. For best results, follow the guidelines below.

- Keep the input-switching loop between the flyback input capacitor, the transformer, the SW pin and PGND as short as possible.
- Keep the output loop between the rectifier diode, the output capacitor and the transformer as short as possible.
- Keep the active clamp loop between the active clamp capacitor, the transformer, the SW pin and the SNBR pin as short as possible.
- Keep the input hot-swap loop between the PD input capacitor, the VDD pin, the VBUS pin and the VBUS capacitor as short as possible.
- The VCC capacitor must be placed close to the VCC pin for best decoupling.
- The feedback trace should be short and far away from noise source such as switching node.
- Other signal leads should be as short as possible, such as the DET, CLASS, COMP, VDIODE, SS, and FSW pins.
- CP loop and BST loop should be short for good hot-swap and HS-FET driver.
- Use single point connection between the power ground and the signal ground.
- Use copper and vias under the TPE1501x package for good thermal performance.

Refer to below figure for recommended layout, which is referenced to Figure 43. For more detail information, refer to the offiial evaluation board.

Layout Example

Figure 46. PCB Layout Example

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPE15017- QF5R	QFN3X4-19	330	17.6	3.3	4.3	1	8	12	Q1
TPE15018- QF5R	QFN3X4-19	330	17.6	3.3	4.3	1	8	12	Q1

Package Outline Dimensions

QFN3X4-19

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPE15017-QF5R	−40 to 125°C	QFN3X4-19	15017	MSL1	Tape and Reel,3000	Green
TPE15018-QF5R	−40 to 125°C	QFN3X4-19	15018	MSL1	Tape and Reel,3000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2025. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.