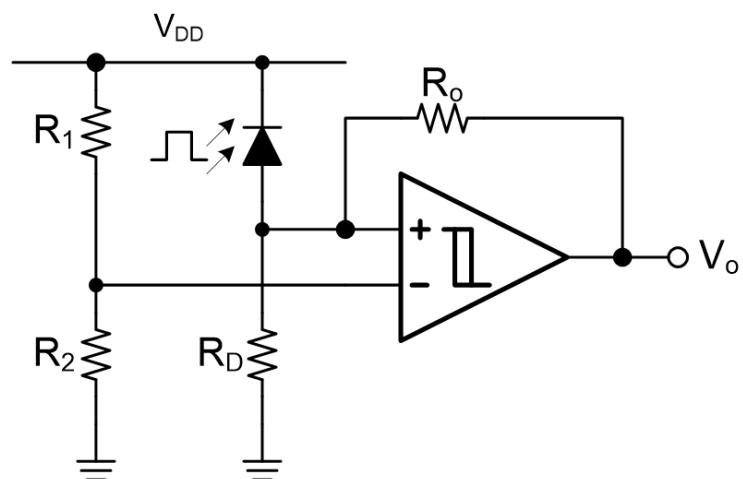


5-V Low-Power Comparators with Open Drain Output

Features

- Power Supply Voltage: 1.5 V to 5.5 V
- Low Supply Current: 40 μ A per Channel
- High-to-Low Propagation Delay: 100 ns
- Internal Hysteresis Ensures Clean Switching
- Offset Voltage: ± 5 mV
- Input Bias Current: 75 pA (Typ)
- Input Common-Mode Range Extends 100 mV for $+V_S$ and 100 mV for $-V_S$
- Open Drain Output
- TPCMP202-VS1R-S is Qualified for Automotive Applications with the AEC- Q100 Reliability Test

Applications


- Peak and Zero-Crossing Detectors
- Threshold Detectors/Discriminators
- Sensing at the Ground or Supply Line
- Logic Level Shifting or Translation
- Window Comparators
- IR Receivers

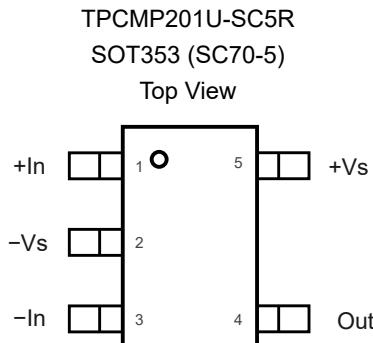
Description

The devices are low-power comparators with internal hysteresis. The common-mode input voltage range extends 100 mV beyond the positive power rail and 100 mV beyond the negative power rail. The devices have 100-ns propagation delay which makes the devices suitable for general applications. The internal input hysteresis eliminates output switching caused by input noise voltage.

The operating temperature range of the devices is from -40°C to $+125^{\circ}\text{C}$.

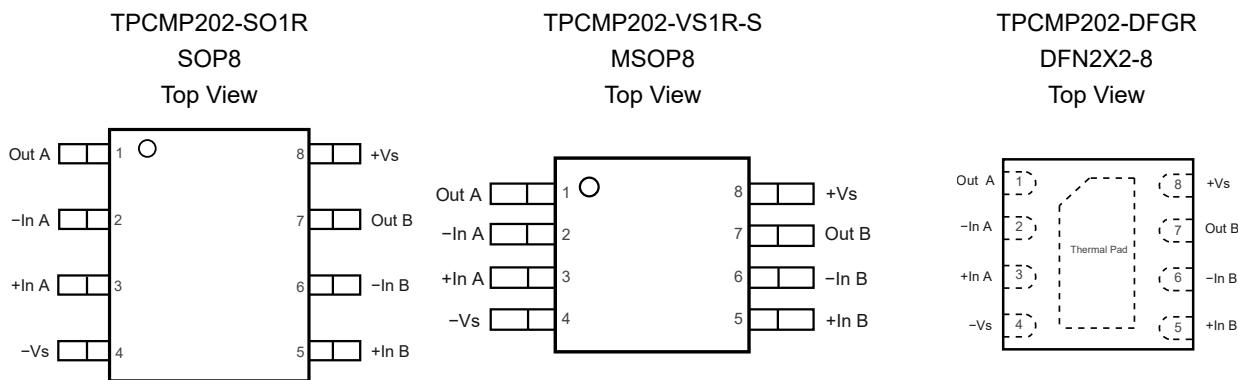
Typical Application Circuit

Table of Contents


Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection.....	6
Recommended Operating Conditions.....	6
Thermal Information.....	7
Electrical Characteristics.....	8
Typical Performance Characteristics.....	11
Detailed Description	13
Overview.....	13
Functional Block Diagram.....	13
Application and Implementation	14
Application Information	14
Typical Application.....	15
Tape and Reel Information	16
Package Outline Dimensions	17
SOT353 (SC70-5).....	17
SOP8.....	18
MSOP8.....	19
DFN2X2-8.....	20
Order Information	21
IMPORTANT NOTICE AND DISCLAIMER	22

5-V Low-Power Comparators with Open Drain Output

Revision History


Date	Revision	Notes
2025-07-30	Rev.A.0	<p>Initial version.</p>
2025-11-14	Rev.A.1	<p>Added TPCMP202 Electrical Characteristics:</p> <ul style="list-style-type: none"> • $V_S = 5 \text{ V}$, $I_{OL} = 4 \text{ mA}$, TPCMP202, V_{OL}: Typ 208 mV • $V_S = 5 \text{ V}$, $I_{OL} = 4 \text{ mA}$, TPCMP202, V_{OL}: Typ 310 mV • $V_S = 3.3 \text{ V}$, $I_{OL} = 1 \text{ mA}$, TPCMP202, V_{OL}: Typ 70 mV • $V_S = 3.3 \text{ V}$, $I_{OL} = 1 \text{ mA}$, $T_A = -40^\circ\text{C}$ to 125°C, TPCMP202, V_{OL}: Typ 105 mV • $V_S = 5 \text{ V}$, TPCMP202, I_{SINK}: Typ 23 mA <p>Updated Electrical Characteristics descriptions:</p> <ul style="list-style-type: none"> • T_{PLH} conditions: changed from "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 100 mV overdrive, Delay time is measured from mid-point of input to mid-point of output." to "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 100-mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output." and changed from "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 20 mV overdrive, Delay time is measured from mid-point of input to mid-point of output." to "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 20-mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output." • T_{PHL} conditions: changed from "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 100 mV overdrive, Delay time is measured from mid-point of input to mid-point of output." to "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 100-mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output." and changed from "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 20 mV overdrive, Delay time is measured from mid-point of input to mid-point of output." to "$V_S = 5 \text{ V}$, $\Delta V_{IN} = 1 \text{ V}$, $V_{CM} = V_S/2$, 20-mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output." • T_{on} conditions: changed from "$V_S = 5 \text{ V}$, the time between V_S exceed 1.5 V and the output is in a correct state." to "$V_S = 5 \text{ V}$, the time between V_S exceeds 1.5 V and the output is in a correct state." <p>Updated Typical Performance Characteristics:</p> <ul style="list-style-type: none"> • Added figure for Output Voltage vs. Output Sinking Current, 5 V, TPCMP202

Pin Configuration and Functions

Table 1. Pin Functions: TPCMP201U-SC5R

Pin No.	Name	I/O	Description
1	+In	I	Non-inverting input.
2	-Vs	-	Negative power supply.
3	-In	I	Inverting input.
4	Out	O	Output.
5	+Vs	-	Positive power supply.

5-V Low-Power Comparators with Open Drain Output

Table 2. Pin Functions: TPCMP202-SO1R/TPCMP202-VS1R-S/TPCMP202-DFGR

Pin No.			Name	I/O	Description
TPCMP202-SO1R	TPCMP202-VS1R-S	TPCMP202-DFGR			
1	1	1	Out A	O	Output
2	2	2	-In A	I	Inverting input
3	3	3	+In A	I	Non-inverting input
4	4	4	-Vs	-	Negative power supply
5	5	5	+In B	I	Non-inverting input
6	6	6	-In B	I	Inverting input
7	7	7	Out B	O	Output
8	8	8	+Vs	-	Positive power supply.
-	-	Exposed Thermal Pad	Exposed Thermal Pad	-	Exposed Thermal Pad. The exposed pad is tied to the -Vs.

5-V Low-Power Comparators with Open Drain Output

Specifications

Absolute Maximum Ratings (1)

Parameter		Min	Max	Unit
	Supply Voltage, $(+V_S) - (-V_S)$	0	6	V
	Input Voltage	$(-V_S) - 0.3$	$(+V_S) + 0.3$	V
	Input Current: $+IN, -IN$ (2)	-10	10	mA
	Output Current: OUT	-10	10	mA
	Output Short-Circuit Duration (3)		Continuous	
T_J	Maximum Junction Temperature		150	°C
T_A	Operating Temperature Range	-40	125	°C
T_{STG}	Storage Temperature Range	-65	150	°C
T_L	Lead Temperature (Soldering 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

(2) The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500 mV beyond the negative power supply, the input current should be limited to less than 10 mA.

(3) A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many comparators are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

ESD, Electrostatic Discharge Protection

Parameter		Condition	Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	2	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	1	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

Parameter		Min	Typ	Max	Unit
V_S	Supply Voltage, $(+V_S) - (-V_S)$	1.5		5.5	V

Thermal Information

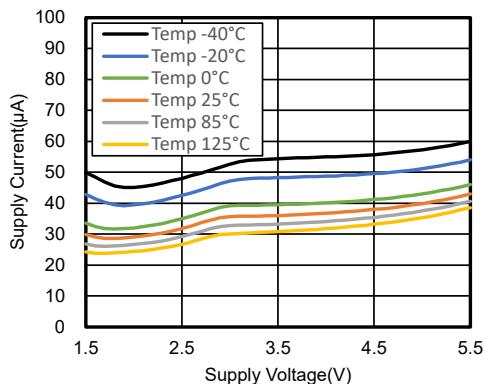
Package Type	θ_{JA}	θ_{JC}	Unit
SOT353 (SC70-5)	400	150	°C/W
SOP8	158	43	°C/W
MSOP8	210	45	°C/W
DFN2X2-8	100	60	°C/W

5-V Low-Power Comparators with Open Drain Output
Electrical Characteristics

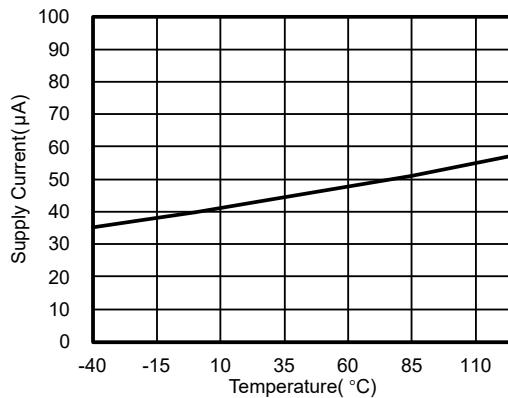
All test conditions: $V_S = 5 \text{ V}$, $R_{PULL-UP} = 2.5 \text{ k}$, $T_A = 25^\circ\text{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Power Supply						
I_Q	Quiescent Current per Comparator	$V_S = 5 \text{ V}$, No Load, Output High, $V_{INP} = 1 \text{ V}$, $V_{INN} = 0 \text{ V}$		38	70	μA
		$V_S = 5 \text{ V}$, No Load, Output Low, $V_{INP} = 0 \text{ V}$, $V_{INN} = 1 \text{ V}$		34	70	μA
		$V_S = 1.8 \text{ V}$, No Load, Output High, $V_{INP} = 1 \text{ V}$, $V_{INN} = 0 \text{ V}$		27	60	μA
		$V_S = 1.8 \text{ V}$, No Load, Output Low, $V_{INP} = 0 \text{ V}$, $V_{INN} = 1 \text{ V}$		26	60	μA
PSRR	Power Supply Rejection Ratio	$V_S = 1.5 \text{ V}$ to 5.5 V , $V_{CM} = 0 \text{ V}$	65	91		dB
		$V_S = 1.5 \text{ V}$ to 5.5 V , $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C	60			dB
Input Characteristics						
V_{OS}	Input Offset Voltage ⁽¹⁾	$V_S = 5 \text{ V}$, $V_{CM} = 0 \text{ V}$	-5	1.2	5	mV
		$V_S = 5 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C	-6.5		6.5	mV
V_{OS-TC}	Input Offset Voltage Drift ⁽²⁾	$V_S = 5 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C		5		$\text{uV}/^\circ\text{C}$
V_{HYST}	Input Hysteresis Voltage ⁽¹⁾	$V_S = 5 \text{ V}$, $V_{CM} = 0 \text{ V}$	3	4.5	6	mV
		$V_S = 5 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C	2		8	mV
V_{OS}	Input Offset Voltage ⁽¹⁾	$V_S = 1.8 \text{ V}$, $V_{CM} = 0 \text{ V}$	-5	1.2	5	mV
		$V_S = 1.8 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C	-6.5		6.5	mV
V_{OS-TC}	Input Offset Voltage Drift ⁽²⁾	$V_S = 1.8 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C		2		$\text{uV}/^\circ\text{C}$
V_{HYST}	Input Hysteresis Voltage ⁽¹⁾	$V_S = 1.8 \text{ V}$, $V_{CM} = 0 \text{ V}$	3	4.5	6	mV
		$V_S = 1.8 \text{ V}$, $V_{CM} = 0 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C	2		8	mV
I_B	Input Bias Current	$V_S = 5 \text{ V}$, $V_{CM} = V_S/2$		10		pA
		$V_S = 5 \text{ V}$, $V_{CM} = V_S/2$, $T_A = -40^\circ\text{C}$ to 125°C			200	pA
I_{OS}	Input Offset Current	$V_S = 5 \text{ V}$, $V_{CM} = V_S/2$		1		pA
		$V_S = 5 \text{ V}$, $V_{CM} = V_S/2$, $T_A = -40^\circ\text{C}$ to 125°C	-100		100	pA
V_{CM}	Common-mode Voltage Range	$V_S = 5 \text{ V}$, $T_A = -40^\circ\text{C}$ to 125°C	-0.1		5.1	V

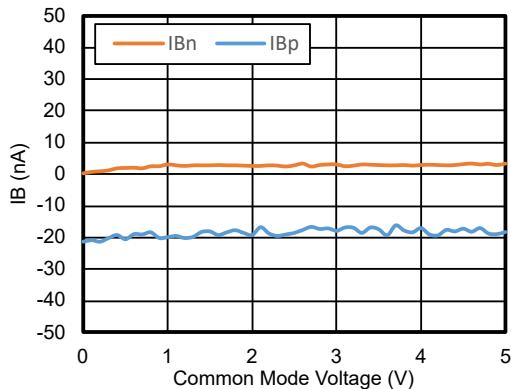
5-V Low-Power Comparators with Open Drain Output

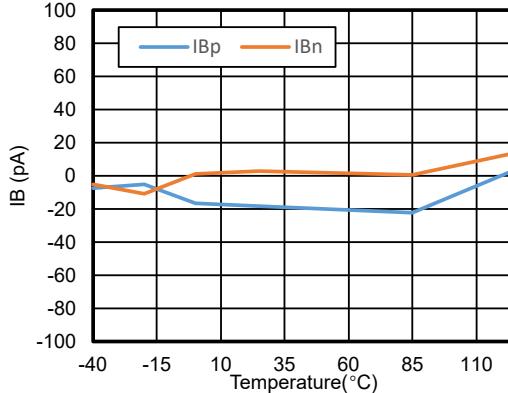

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
CMRR	Common-mode Rejection Ratio	$V_S = 5 \text{ V}, V_{CM} = -0.1 \text{ V to } 5.1 \text{ V}$	63	80		dB
		$V_S = 5 \text{ V}, V_{CM} = -0.1 \text{ V to } 5.1 \text{ V}, T_A = -40^\circ\text{C to } 125^\circ\text{C}$	60			dB
Output						
V _{OL}	Output Voltage Swing from Negative Rail	$V_S = 5 \text{ V}, I_{OL} = 4 \text{ mA}, \text{TPCMP201}$		75	80	mV
		$V_S = 5 \text{ V}, I_{OL} = 4 \text{ mA}, T_A = -40^\circ\text{C to } 125^\circ\text{C, TPCMP201}$			110	mV
		$V_S = 3.3 \text{ V}, I_{OL} = 1 \text{ mA}, \text{TPCMP201}$		26	30	mV
		$V_S = 3.3 \text{ V}, I_{OL} = 1 \text{ mA}, T_A = -40^\circ\text{C to } 125^\circ\text{C, TPCMP201}$			40	mV
		$V_S = 5 \text{ V}, I_{OL} = 4 \text{ mA}, \text{TPCMP202}$		208		mV
		$V_S = 5 \text{ V}, I_{OL} = 4 \text{ mA}, T_A = -40^\circ\text{C to } 125^\circ\text{C, TPCMP202}$		310		mV
		$V_S = 3.3 \text{ V}, I_{OL} = 1 \text{ mA}, \text{TPCMP202}$		70		mV
		$V_S = 3.3 \text{ V}, I_{OL} = 1 \text{ mA}, T_A = -40^\circ\text{C to } 125^\circ\text{C, TPCMP202}$		105		mV
I _{SINK}	Sink Current	$V_S = 5 \text{ V, TPCMP201}$	45	60		mA
		$V_S = 5 \text{ V, TPCMP202}$		23		mA
		$V_S = 3.3 \text{ V, TPCMP202}$		15	20	mA
Switching Characteristics (3)						
T _{PLH}	Propagation Delay Time, Low to High	$V_S = 5 \text{ V}, \Delta V_{IN} = 1 \text{ V}, V_{CM} = V_S/2, 100-\text{mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output.}$		155		ns
		$V_S = 5 \text{ V}, \Delta V_{IN} = 1 \text{ V}, V_{CM} = V_S/2, 20-\text{mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output.}$		260		ns
T _{PHL}	Propagation Delay Time, High to Low	$V_S = 5 \text{ V}, \Delta V_{IN} = 1 \text{ V}, V_{CM} = V_S/2, 100-\text{mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output.}$		100		ns
		$V_S = 5 \text{ V}, \Delta V_{IN} = 1 \text{ V}, V_{CM} = V_S/2, 20-\text{mV overdrive, Delay time is measured from the mid-point of the input to the mid-point of the output.}$		210		ns
T _F	Fall Time (4)(5)	$V_S = 5 \text{ V}$		1.7		ns
T _{on}	Power-up Time (4)	$V_S = 5 \text{ V, the time between } V_S \text{ exceeds } 1.5 \text{ V and the output is in a correct state.}$		20		μs
f _{toggle}	Toggle Frequency (4)	$V_S = 5 \text{ V}$		5		MHz

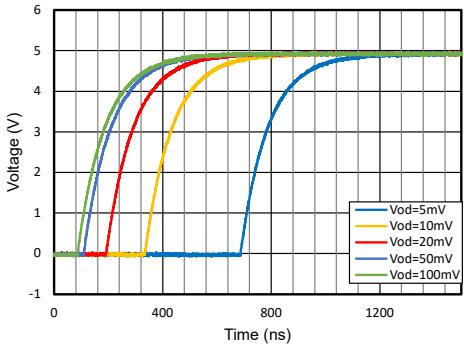
5-V Low-Power Comparators with Open Drain Output

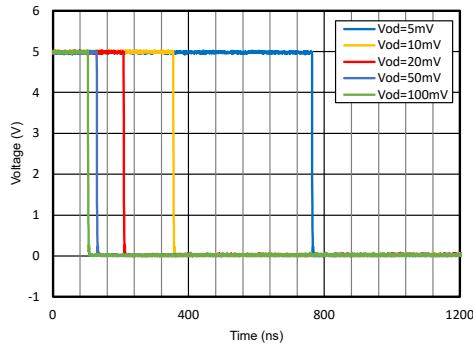

- (1) The input offset voltage is the average of the input-referred trip points. The input hysteresis is the difference between the input-referred trip points.
- (2) Provided by bench tests and design simulation.
- (3) Delay time is measured from the mid-point of the input to the mid-point of the output.
- (4) Provided by design simulation.
- (5) Measured between 20% of V_S and 80% of V_S .

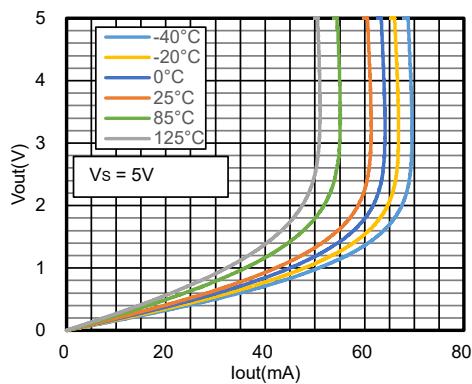
5-V Low-Power Comparators with Open Drain Output
Typical Performance Characteristics


All test conditions: $V_S = 5$ V, $R_{PULL-UP} = 2.5$ k, $T_A = 25^\circ\text{C}$, unless otherwise noted.


Figure 1. Supply Current vs. Supply Voltage, Output High


Figure 2. Supply Current vs. Temperature


Figure 3. IB vs. Common-Mode Voltage


Figure 4. IB vs. Temperature

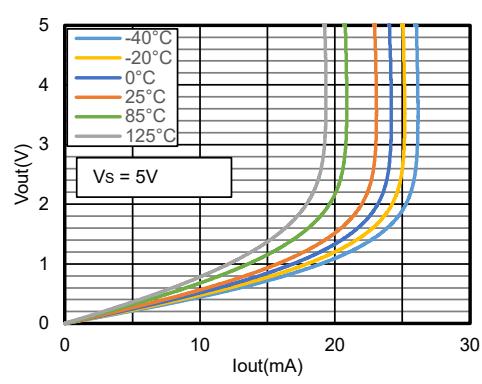

Figure 5. Propagation Delay, Low to High, 5 V

Figure 6. Propagation Delay, High to Low, 5 V

5-V Low-Power Comparators with Open Drain Output

**Figure 7. Output Voltage vs. Output Sinking Current, 5 V,
TPCMP201**

**Figure 8. Output Voltage vs. Output Sinking Current, 5 V,
TPCMP202**

Detailed Description

Overview

The devices feature 100-ns response time and include 5 mV of internal hysteresis for improved noise immunity with an input common-mode range that extends 0.1 V beyond the positive power supply rail and 0.1 V beyond the negative power supply rail, having the ability to operate from 1.5 V to 5.5 V on the supply pin.

Functional Block Diagram

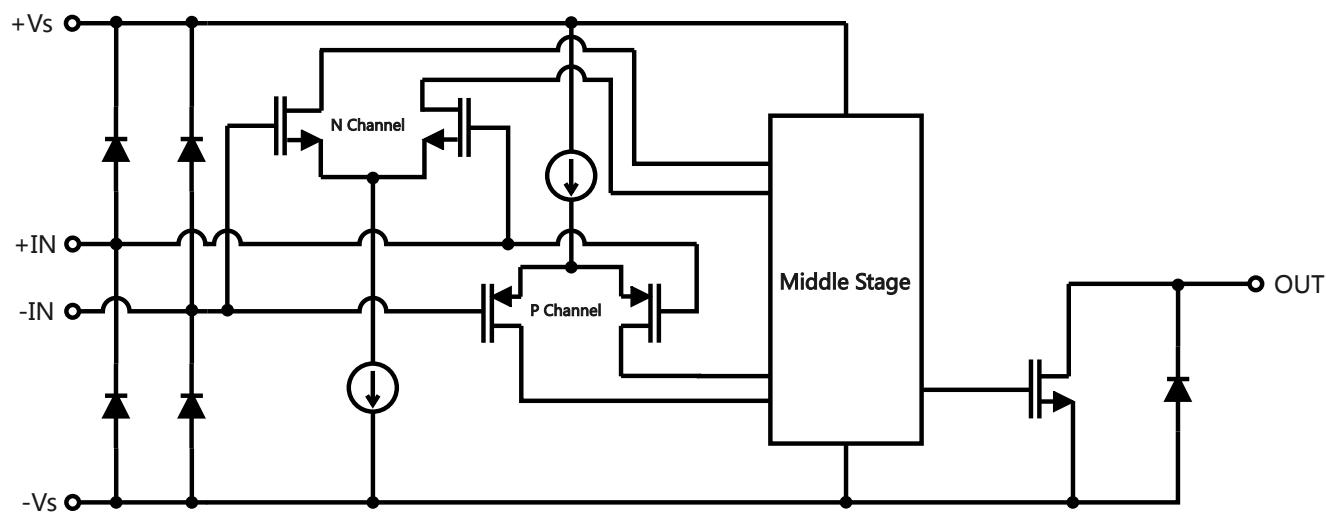


Figure 9. Functional Block Diagram

5-V Low-Power Comparators with Open Drain Output

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

Power Supply Layout and Bypass

The power supply pins of the TPCMP201 and the TPCMP202 should have local bypass capacitors (i.e., 0.01 μ F to 0.1 μ F) within 2 mm for high-frequency performance. They can also use a bulk capacitor (i.e., 1 μ F or larger) within 100 mm to provide large and slow currents. This bulk capacitor can be shared with other analog parts.

A good ground layout improves performance by decreasing the amount of stray capacitance and noise at the inputs and outputs of the comparator. To decrease stray capacitance, minimize PCB lengths and resistor leads, and place external components to the pins of the comparator as close as possible.

Operation Outside of the Common Input Voltage Range

A list of input voltage situations and the corresponding outcomes are as follows:

1. When both $-IN$ and $+IN$ are within the common-mode range:
 - a. If the voltage at the $-IN$ pin is higher than the voltage at the $+IN$ pin and the offset voltage, the output is low, and the output MOSFET is sinking current.
 - b. If the voltage at the $-IN$ pin is lower than the voltage at the $+IN$ pin and the offset voltage, the output is high impedance.
2. When the voltage at the $-IN$ pin is higher than the common-mode voltage range and the voltage at the $+IN$ pin is within the common-mode voltage range, the output is low, and the output MOSFET is sinking current.
3. When the voltage at the $+IN$ pin is higher than the common-mode voltage range and the voltage at the $-IN$ pin is within the common-mode voltage range, the output is high impedance.
4. When the voltage at the $-IN$ and $+IN$ pins are both higher than the common-mode voltage range, the output is in an uncertain state.

Typical Application

IR Receiver

The device is an ideal candidate to be used as an infrared receiver shown in [Figure 10](#). The infrared photo diode produces a current relative to the amount of infrared light present. The current creates a voltage across R_D . When this voltage level crosses the voltage applied by the voltage divider to the inverting input, the output transitions. Optional R_O provides additional hysteresis for noise immunity.

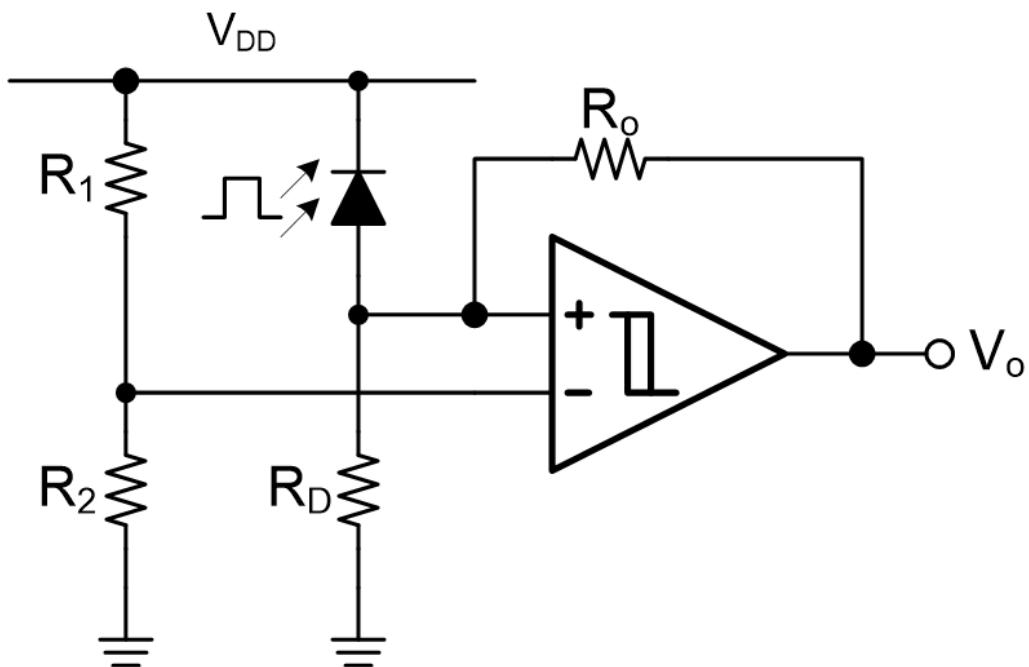
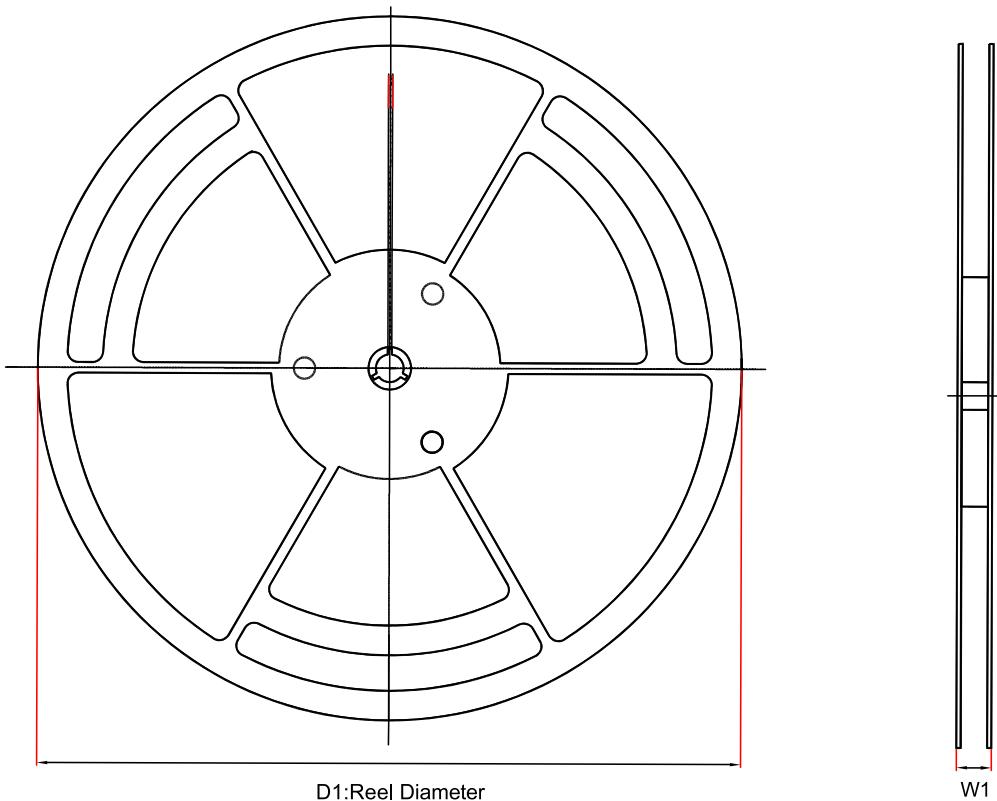



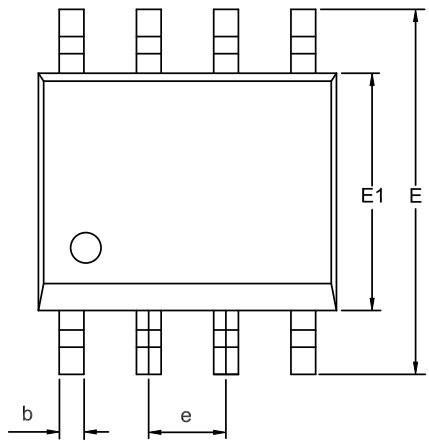
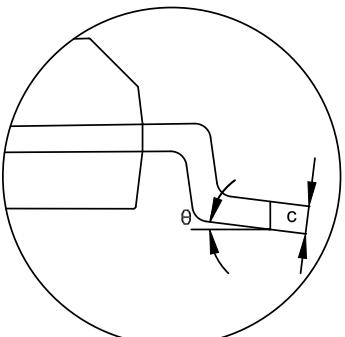
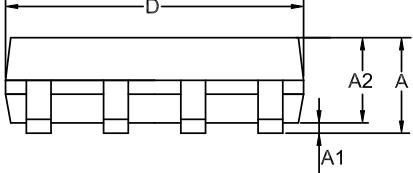
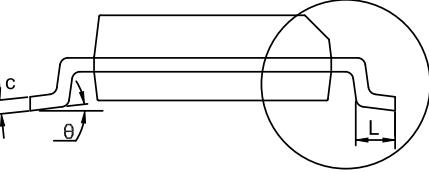
Figure 10. Typical Application Circuit

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm) ⁽¹⁾	B0 (mm) ⁽¹⁾	K0 (mm) ⁽¹⁾	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPCMP201U-SC5R	SOT353 (SC70-5)	178	12.1	2.4	2.5	1.2	4	8	Q3
TPCMP202-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1
TPCMP202-VS1R-S	MSOP8	330	17.6	5.3	3.4	1.3	8	12	Q1
TPCMP202-DFGR	DFN2X2-8	180	12.5	2.3	2.3	1.1	4	8	Q2

(1) The value is for reference only. Contact the 3PEAK factory for more information.

Package Outline Dimensions





SOT353 (SC70-5)

Package Outline Dimensions		SC5(SOT353-5-B)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.800	1.100	0.031	0.043	
A1	0.000	0.100	0.000	0.004	
A2	0.800	1.000	0.031	0.039	
b	0.150	0.350	0.006	0.014	
c	0.110	0.230	0.004	0.009	
D	2.020	2.120	0.080	0.083	
E	2.150	2.450	0.085	0.096	
E1	1.210	1.310	0.048	0.052	
e	0.650 BSC		0.026 BSC		
e1	1.200	1.400	0.047	0.055	
L	0.260	0.460	0.010	0.018	
L1	0.520 REF		0.020 REF		
K	0.000	0.200	0.000	0.008	
M	0.100	0.200	0.004	0.008	
theta	0	8°	0	8°	

NOTES

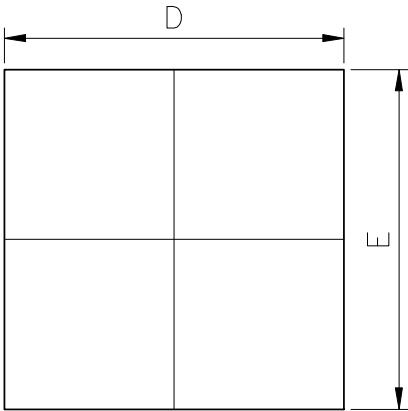
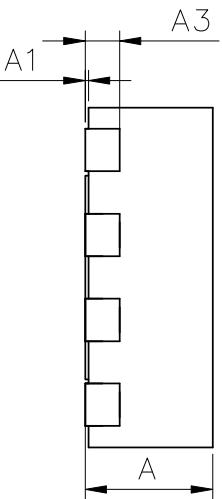
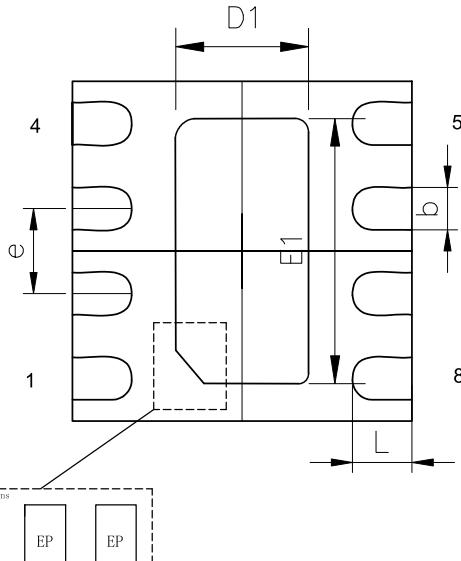
1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

SOP8

Package Outline Dimensions		SO1(SOP-8-A)			
Symbol	Dimensions In Millimeters	Dimensions In Inches			
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.050	0.250	0.002	0.010	
A2	1.250	1.550	0.049	0.061	
b	0.330	0.510	0.013	0.020	
c	0.170	0.250	0.007	0.010	
D	4.700	5.100	0.185	0.201	
E	5.800	6.200	0.228	0.244	
E1	3.800	4.000	0.150	0.157	
e	1.270 BSC		0.050 BSC		
L	0.400	1.000	0.016	0.039	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.




MSOP8

Package Outline Dimensions		VS1(MSOP-8-A)			
Symbol	Dimensions In Millimeters		Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	0.800	1.100	0.031	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
c	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	4.700	5.100	0.185	0.201	
E1	2.900	3.100	0.114	0.122	
e	0.650 BSC		0.026 BSC		
L	0.400	0.800	0.016	0.031	
θ	0	8°	0	8°	

NOTES

1. Do not include mold flash or protrusion.
2. This drawing is subject to change without notice.

DFN2X2-8

Package Outline Dimensions		DFG(DFN2X2-8-E)																																																														
Top View		Side View																																																														
		<table border="1"> <thead> <tr> <th rowspan="2">Symbol</th><th colspan="2">Dimensions In Millimeters</th><th colspan="2">Dimensions In Inches</th></tr> <tr> <th>MIN</th><th>MAX</th><th>MIN</th><th>MAX</th></tr> </thead> <tbody> <tr> <td>A</td><td>0.500</td><td>0.600</td><td>0.020</td><td>0.024</td></tr> <tr> <td>A1</td><td>0.000</td><td>0.050</td><td>0.000</td><td>0.002</td></tr> <tr> <td>b</td><td>0.150</td><td>0.300</td><td>0.006</td><td>0.012</td></tr> <tr> <td>A3</td><td>0.100</td><td>0.200</td><td>0.004</td><td>0.008</td></tr> <tr> <td>D</td><td>1.900</td><td>2.100</td><td>0.075</td><td>0.083</td></tr> <tr> <td>D1</td><td>0.800</td><td>1.000</td><td>0.031</td><td>0.039</td></tr> <tr> <td>E</td><td>1.900</td><td>2.100</td><td>0.075</td><td>0.083</td></tr> <tr> <td>E1</td><td>1.600</td><td>1.800</td><td>0.063</td><td>0.071</td></tr> <tr> <td>e</td><td colspan="2">0.500 BSC</td><td colspan="2">0.020BSC</td></tr> <tr> <td>L</td><td>0.224</td><td>0.376</td><td>0.009</td><td>0.015</td></tr> </tbody> </table>				Symbol	Dimensions In Millimeters		Dimensions In Inches		MIN	MAX	MIN	MAX	A	0.500	0.600	0.020	0.024	A1	0.000	0.050	0.000	0.002	b	0.150	0.300	0.006	0.012	A3	0.100	0.200	0.004	0.008	D	1.900	2.100	0.075	0.083	D1	0.800	1.000	0.031	0.039	E	1.900	2.100	0.075	0.083	E1	1.600	1.800	0.063	0.071	e	0.500 BSC		0.020BSC		L	0.224	0.376	0.009	0.015
Symbol	Dimensions In Millimeters		Dimensions In Inches																																																													
	MIN	MAX	MIN	MAX																																																												
A	0.500	0.600	0.020	0.024																																																												
A1	0.000	0.050	0.000	0.002																																																												
b	0.150	0.300	0.006	0.012																																																												
A3	0.100	0.200	0.004	0.008																																																												
D	1.900	2.100	0.075	0.083																																																												
D1	0.800	1.000	0.031	0.039																																																												
E	1.900	2.100	0.075	0.083																																																												
E1	1.600	1.800	0.063	0.071																																																												
e	0.500 BSC		0.020BSC																																																													
L	0.224	0.376	0.009	0.015																																																												
NOTES <ol style="list-style-type: none"> 1. Do not include mold flash or protrusion. 2. This drawing is subject to change without notice. 3. The many types of E-pad Pin1 signs may appear in the product. 																																																																

5-V Low-Power Comparators with Open Drain Output

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPCMP201U-SC5R	-40 to 125°C	SOT353 (SC70-5)	A9T	1	Tape and Reel, 3000	Green
TPCMP202-VS1R-S ⁽¹⁾	-40 to 125°C	MSOP8	MP202	1	Tape and Reel, 3000	Green
TPCMP202-SO1R ⁽²⁾	-40 to 125°C	SOP8		1	Tape and Reel, 3000	Green
TPCMP202-DFGR ⁽²⁾	-40 to 125°C	DFN2X2-8		1	Tape and Reel, 3000	Green

(1) Passed AEC-Q100 Reliability Test.

(2) For future products, contact the 3PEAK factory for more information and samples.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright© 3PEAK 2012-2025. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.