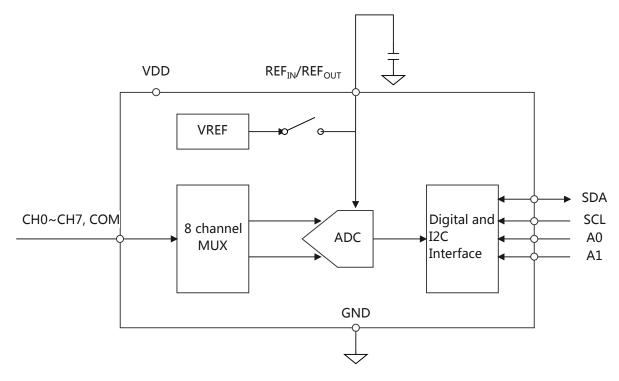


Features

- 12-Bit SAR ADC with I²C Interface
- Unipolar, Differential Analog Input
- Reference
 - Internal 2.5-V Reference
 - External Reference
- I²C Interface supports following Modes:
 - Standard
 - Fast
 - High-Speed
- Package
 - TSSOP16
- Wide Operating Temperature Range
 - −40°C to +125°C

Applications


- Data Acquisitions
- Instruments
- Industry Measurement and Control
- Automatic Test Equipment
- Voltage Supply Monitoring

Description

The TPC502200 is a 12-bit analog-to-digital converter (ADC). The device supports 8-channel inputs with a multiplexer, and the inputs can be controlled by multiplexer configuration. The device has an internal reference, and also supports external reference.

The device has a serial I^2C interface. The two-wire interface makes it suitable for multi-device applications on the same signal bus, or for applications with isolation.

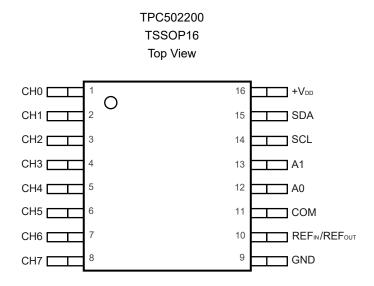
The device is available in TSSOP-16 package.

Typical Application Circuit

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	5
Electrical Characteristics	6
Timing Requirements ⁽¹⁾	8
Typical Performance Characteristics	10
Detailed Description	12
Overview	12
Functional Block Diagram	12
Analog Input	12
Reference	12
Digital Interface	13
Layout	19
Layout Example	19
Tape and Reel Information	20
Package Outline Dimensions	21
TSSOP16	21
Order Information	22
IMPORTANT NOTICE AND DISCLAIMER	23

Product Family Table


Order Number	ADC Channel	Interface	Package
TPC502200-TS3R-S	8	l ² C	TSSOP16

Revision History

Date	Revision	Notes
2023-08-30	Rev.A.0	Initial released
		1. Updated Timing specification
		2. Changed Figure 4, 5, and 6
2024-07-31	Rev.A.1	3. Updated Additional description of reading in F/S mode
		4. Added Typical performance characteristics figures
		5. Added Example board layout

Pin Configuration and Functions

Table 1. Pin Functions: TPC502200

Р	in	1/0	Description
No.	Name	I/O	Description
1	CH0	Input	Analog Input 0
2	CH1	Input	Analog Input 0
3	CH2	Input	Analog Input 0
4	CH3	Input	Analog Input 0
5	CH4	Input	Analog Input 0
6	CH5	Input	Analog Input 0
7	CH6	Input	Analog Input 0
8	CH7	Input	Analog Input 0
9	GND	Power	Ground
10	REFIN/REFOUT	Input/Output	Internal Reference, and External Reference Input
11	СОМ	Input	Common analog Input
12	A0	Input	Slave address bit 0
13	A1	Input	Slave address bit 1
14	SCL	Input	Serial clock
15	SDA	Input/Output	Serial data
16	VDD	Power	Power supply

Specifications

Absolute Maximum Ratings ⁽¹⁾

	Parameter		Мах	Unit
	VDD to GND	-0.3	6	V
	Digital IO to GND	-0.3	VDD + 0.3	V
	Analog IO to GND	-0.3	VDD + 0.3	V
	Operating Temperature	-40	125	°C
T _{STG}	Storage temperature, Tstg	-65	150	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Parameter		Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	±4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter		Nom	Мах	Unit
V _{DD}	Analog Supply Voltage	2.7		5	V
T _A	Operating Ambient Temperature	-40		125	°C

Thermal Information

Package Type	θ」Α	θյς	Unit
TSSOP16	114	50	°C/W

Electrical Characteristics

All test conditions is at VDD = 2.7 V to 5 V, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Unit
Analog Input			L		
Full-Scale Input Scan	Positive Input - Negative Input	0		V _{REF}	V
	Positive Input	-0.2		+VDD+0.2	V
Absolute Input Range	Negative Input	-0.2		0.2	V
Capacitance			16		pF
Leakage Current		-10	±1	10	μA
System Performance		1			
No Missing Codes		12			Bits
ntegral Linearity Error VDD = 5 V, V _{REF} = 5 V		-1	±0.4	+1	LSB
Differential Linearity Error	VDD = 5 V, V _{REF} = 5 V	-0.99	±0.3	+1	LSB
0 [#]	VDD = 2.7 V, V _{REF} = 2.5 V	-2	±0.75	+2	LSB
Offset Error	VDD = 5 V, V _{REF} = 5 V	-2	±0.75	+2	LSB
0% (F N)	VDD = 2.7 V, V _{REF} = 2.5 V		±0.5		LSB
Offset Error Match	VDD = 5 V, V _{REF} = 5 V		±0.5		LSB
Gain Error	VDD = 2.7 V, V _{REF} = 2.5 V	-3	±0.75	+3	LSB
	VDD = 5 V, V _{REF} = 5 V	-2.5	±0.75	+2.5	LSB
Coin Error Motoh	VDD = 2.7 V, V _{REF} = 2.5 V		±0.25		LSB
Gain Error Match	VDD = 5 V, V _{REF} = 5 V		±0.5		LSB
Power-Supply Rejection			79		dB
Sampling Dynamics					
	High Speed Mode: SCL = 3.4 MHz			40	kHz
Throughput Frequency	Fast Mode: SCL = 400 kHz			8	kHz
	Standard Mode: SCL = 100 kHz			2	kHz
Conversion Time			3.5		μs
AC Accuracy					
Total Hatmonic Distortion	Vin at 1 kHz VDD = 5 V, V _{REF} = 5 V		-89		dB
Signal-to-Noise Ratio	Vin at 1 kHz VDD = 5 V, V _{REF} = 5 V		72		dB
Signal-to-(Noise+Distortion) Ratio	Vin at 1 kHz VDD = 5 V, V _{REF} = 5 V		72		dB
Voltage Reference Output	·				
Range		2.475	2.5	2.525	V
Internal Reference Drift			8		ppm/°C
Output Impedance	Internal Reference ON		25		Ω

Parameter	Co	Conditions		Тур	Max	Unit
Voltage Reference Input	·					
Range			0.05		VDD	V
Resistance				29.4		kΩ
Current Drain	High Speed Mod	High Speed Mode: SCL = 3.4 MHz		85		μA
Digital Input/Output						
Logic Family				CMOS		
Logic Levels:V _{IH}			VDD*0.7			V
VIL					VDD*0.3	V
Vol					0.4	V
Input Leakage: I _{IH}	V _{IH} = VDD +0.3			10		μA
IIL	V _{IL} = -0.3			-10		μA
Data Format				Straight Binary		
HARDWARE ADDRESS				10010		Binary
Power Supply Requirements						
Power-Supply Voltage, VDD	Specified Perform	mance	2.7		5.25	V
	2.7-V Supply	High Speed Mode: SCL = 3.4 MHz		210		μA
Quiscent Current	5-V Supply	High Speed Mode: SCL = 3.4 MHz		210		μA
Power-Down Mode w/ Wrong	2.7-V Supply	High Speed Mode: SCL = 3.4 MHz		200	250	μA
Address Selected	5-V Supply	High Speed Mode: SCL = 3.4 MHz		210	300	μA
Full Power-Down	SCL Pulled HIG	H,SDA Pulled HIGH		20		μA
Temperature Range						
Specified Performance			-40		+125	°C

Timing Requirements ⁽¹⁾

All test conditions is at VDD = 2.7 V to 5.5 V, $T_A = -40^{\circ}C$ to +125°C, unless otherwise noted.

	Parameter	Conditions	Min	Max	Units
		Standard Mode		100	kHz
		Fast Mode		400	kHz
f _{SCL}	SCL Clock Frequency	High-Speed Mode, C _B = 100 pF max		3.4	MHz
		High-Speed Mode, C _B = 400 pF max		1.7	MHz
	Bus Free Time Between a STOP	Standard Mode	4.7		μs
tBUF	and START Condition	Fast Mode	1.3		μs
		Standard Mode	4		μs
t _{HD;STA}	Hold Time (Repeated) START Condition	Fast Mode	600		ns
	Condition	High-Speed Mode	160		ns
		Standard Mode	4.7		μs
	LOW Period of the SCL Clock	Fast Mode	1.3		μs
	LOW Period of the SCL Clock	High-Speed Mode, C _B = 100 pF max	160		ns
		High-Speed Mode, C _B = 400 pF max	320		ns
	HIGH Period of the SCL Clock	Standard Mode	4		μs
t _{ніGH}		Fast Mode	600		ns
		High-Speed Mode, C _B = 100 pF max	60		ns
		High-Speed Mode, C _B = 400 pF max	120		ns
		Standard Mode	4.7		μs
t _{su;sta}	Setup Time for a Repeated START Condition	Fast Mode	600		ns
	Condition	High-Speed Mode	160		ns
		Standard Mode	250		ns
t _{SU;DAT}	Data Setup Time	Fast Mode	100		ns
		High-Speed Mode	10		ns
		Standard Mode	0	3.45	μs
	Data Hald Time	Fast Mode	0	0.9	μs
t _{HD;DAT}	Data Hold Time	High-Speed Mode, C_B = 100 pF max	0	70	ns
		High-Speed Mode, C _B = 400 pF max	0	150	ns
		Standard Mode		1000	ns
	Diss Time of SOL Simpl	Fast Mode	20 + 0.1C _B	300	ns
t _{RCL}	Rise Time of SCL Signal	High-Speed Mode, C _B = 100 pF max	10	40	ns
		High-Speed Mode, C _B = 400 pF max	20	80	ns
	Rise Time of SCL Signal After a	Standard Mode		1000	ns
t _{RCL1}	Repeated START Condition and	Fast Mode	20 + 0.1C _B	300	ns
	After an Acknowledge Bit	High-Speed Mode, C _B = 100 pF max	10	80	ns

	Parameter	Conditions	Min	Max	Units
		High-Speed Mode, C_B = 400 pF max	20	160	ns
		Standard Mode		300	ns
		Fast Mode	20 + 0.1C _B	300	ns
t _{FCL}	Fall Time of SCL Signal	High-Speed Mode, C _B = 100 pF max	10	40	ns
		High-Speed Mode, C _B = 400 pF max	20	80	ns
		Standard Mode		1000	ns
		Fast Mode	20 + 0.1C _B	300	ns
t _{RDA}	Rise Time of SDA Signal	High-Speed Mode, C _B = 100 pF max	10	80	ns
		High-Speed Mode, C_B = 400 pF max	20	160	ns
		Standard Mode		300	ns
	Fall Time of SDA Signal	Fast Mode	20 + 0.1C _B	300	ns
t _{FDA}		High-Speed Mode, C_B = 100 pF max	10	80	ns
		High-Speed Mode, C_B = 400 pF max	20	160	ns
		Standard Mode	4		μs
tsu; sтo	Setup Time for STOP Condition	Fast Mode	600		ns
		High-Speed Mode	160		ns
CB	Capacitive Load for SDA and SCL Line			400	pF
		Fast Mode		50	ns
t _{SP}	Pulse Width of Spike Suppressed	High-Speed Mode		25	ns
	Noise Margin at the HIGH Level for	Standard Mode			
V _{NH}	Each Connected Device (Including	Fast Mode	0.2VDD		V
	Hysteresis)	High-Speed Mode			
	Noise Margin at the LOW Level for	Standard Mode			
V _{NL}	Each Connected Device (Including	Fast Mode	0.1VDD		V
	Hysteresis)	High-Speed Mode			

(1) Parameters are provided by lab bench test and design simulation.

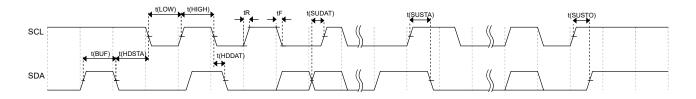
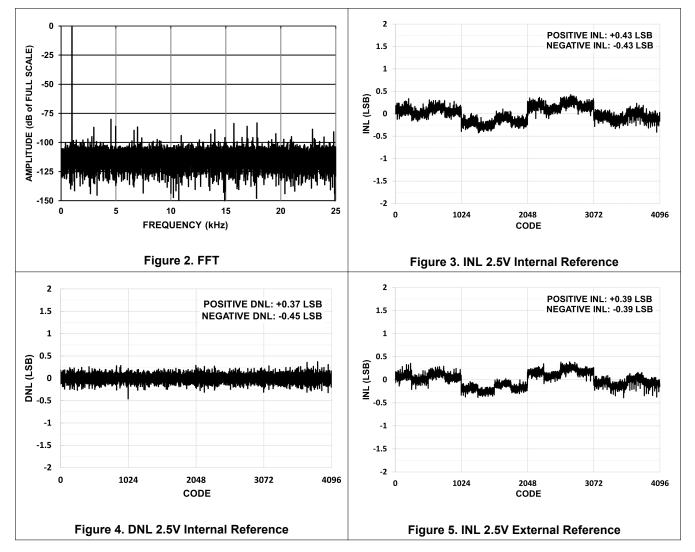
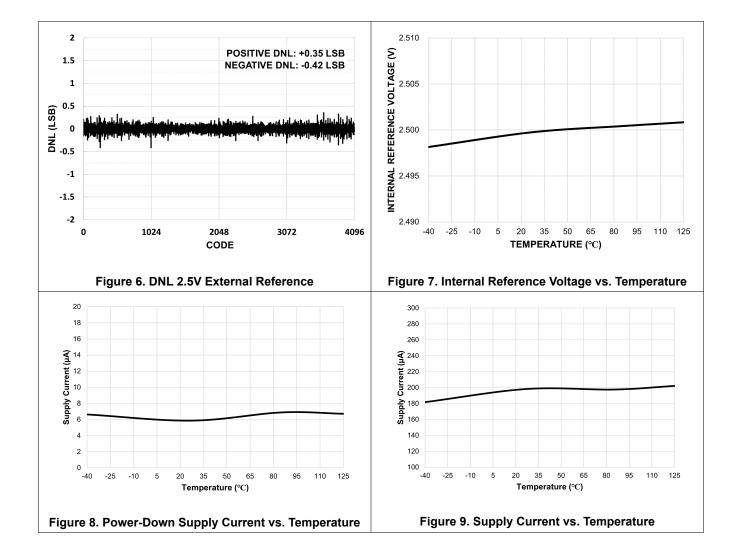



Figure 1. Timing Diagram

Typical Performance Characteristics


All test conditions: V_{REF} = 2.5 V External, VDD = 2.7 V, f_{SAMPLE} = 50 kHz, f_{IN} = 1 kHz, T_A = 25°C, unless otherwise noted.

TPC502200

12-Bit 8-Channel SAR ADC with I²C Interface

Detailed Description

Overview

The TPC502200 is a 12-bit successive approximation register (SAR) ADC with I²C interface. The device is capable to convert analog input into digital output without latency or pipeline delay, so it is ideal for multiple channel applications. When a conversion is initiated, the analog input is sampled on the internal capacitor, and then converted based on charge redistribution with an internal clock. During conversion, the input is disconnected from the internal capacitor.

After conversion, the device reconnects the sampling capacitors to input pins and enters the acquisition phase.

Functional Block Diagram

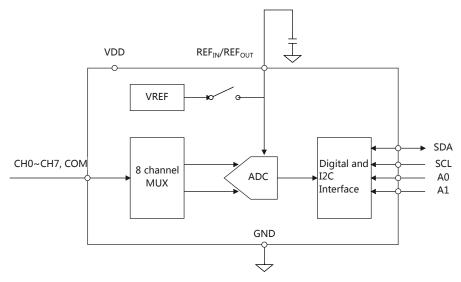


Figure 10. Functional Block Diagram

Analog Input

When the converter is in hold mode, it samples the voltage at the selected CHx pin and stores it in the internal capacitor array. The amount of current drawn from the analog inputs depends on the conversion rate of the device. During the sampling period, it is essential for the source to charge the internal sampling capacitor, typically 16 pF. Once the capacitor is fully charged, there is no further input current. The quantity of charge transferred from the analog source to the converter is determined by the conversion rate.

Reference

The device offers the flexibility of using either an internal 2.5-V reference or an external reference for operation. In cases where a +5-V supply is employed, an external +5-V reference becomes necessary to maximize the dynamic range for analog inputs spanning from 0 V to $+V_{DD}$. This external reference can be as low as 50 mV. However, when utilizing a +2.7-V supply, the internal +2.5-V reference suffices to cover the full dynamic range for analog inputs ranging from 0 V to $+V_{DD}$.

Digital Interface

The device is compatible with the I2C serial bus and data transmission protocol, supporting all three modes: standard, fast, and high-speed. Within this protocol, a device responsible for transmitting data onto the bus is referred to as a transmitter, while a device receiving data is known as a receiver. The device initiates and controls the communication process is designated as the "master," while the devices under the master's control are called "slaves." It is crucial for the bus to be under the control of a master device, which performs tasks such as generating the serial clock (SCL), managing bus access, and initiating the START and STOP conditions. In the context of I2C, the ADC operates as a slave device on the bus. Connections to the bus are established via the open-drain I/O lines, specifically SDA and SCL.

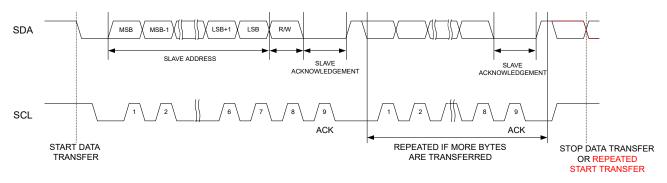


Figure 11. Basic Operation Diagram

The bus protocol has been defined as follows:

- In the defined bus protocol, it's specified that data transfer can only be initiated when the bus is not currently engaged or "busy". This means that before starting any data transfer, it is essential to check and ensure that the bus is in an idle state, available for communication.
- The data line must maintain a stable state when the clock line is in a HIGH state. Any alterations or changes in the data line while the clock line is HIGH will be interpreted as control signals rather than data bits.
- Bus not busy: Both data and clock lines are HIGH.
- Start data transfer: During a start condition, the SDA (Serial Data) line transitions from high to low while the SCL (Serial Clock) line is high. This signals the beginning of a data transfer or communication session.
- Stop data transfer: During a stop condition, the SDA line transitions from low to high while the SCL line is high. This signals the end of the communication session, and the bus is released.
- Data valid: The data line (SDA) is considered to be in a state of valid data when, following a START condition, the data on the SDA line remains stable and can be reliably read for the entire duration of the HIGH period of the clock signal (SCL). There is one clock pulse per bit of data.

Each data transfer begins with a START condition and ends with a STOP condition. The number of data bytes that can be transferred between the START and STOP conditions is not limited and it is determined by the master device. After each byte of data is transferred, the receiving device (the slave) acknowledges the receipt of the data by sending an acknowledgment bit (ACK) or not-acknowledgment bit (NACK) as the ninth bit.

The I²C bus specification defines three different modes of operation based on clock rates: standard mode (100 kHz clock rate), fast mode (400 kHz clock rate), and highspeed mode (3.4 MHz clock rate). The device supports all the modes.

Acknowledgment: This a signal sent by the receiving device (usually a slave device) to acknowledge the successful
receipt of data from the transmitting device (usually the master device) each byte. After the transmission of each byte,
the sender releases the SDA (Serial Data) line and waits for the receiver's acknowledgment. The receiver (slave)
acknowledges the successful reception of the data byte by pulling the SDA line low for a brief moment during the ACK bit
time (usually the ninth clock cycle). This brief low pulse of the SDA line serves as an acknowledgment, indicating that the
data was received without error and that the receiver is ready to accept the next byte of data.

Address Byte

The address byte represents the initial byte received immediately after the master device initiates the START condition. Within this address byte, the first five bits, also referred to as the Most Significant Bits (MSBs), are pre-programmed at the factory to a fixed value of 10010. The subsequent two bits in the address byte, designated as the device select bits A1 and A0, are determined by the state of input pins A1 through A0 on the device itself. These two bits are responsible for specifying the unique device address for each individual device. Consequently, it is possible to connect a maximum of four devices that share this pre-set code on the same bus simultaneously.

The state of the A1 and A0 Address Inputs can be configured by connecting them to either V_{DD} (the power supply voltage) or digital ground (GND). It's important to note that the device address for the ADC is determined by the specific state of these A1 and A0 pins while powering up.

The last bit within the address byte, known as the R/\overline{W} (Read/Write) bit, specifying the type of operation to be executed. When the bit is set to 1, it signifies that a read operation is selected. Conversely, when the R/W bit is set to 0, it signifies a write operation. Following the initiation of the START condition, the device observes the state of the SDA bus, where the device type identifier is being transmitted. Upon successful reception of the complete identifier, which is the 10010 code, the appropriate device select bits, and the R/W bit in the correct sequence, the slave device promptly responds by transmitting an acknowledge signal along the SDA line. This acknowledgment signal serves as confirmation that the ADC has identified the master's request and is prepared to proceed with the requested read or write operation.

Address Byte											
MSB	6	5	4	3	2	1	LSB				
1	0	0	1	0	A1	A0	R/W				

Command Byte

The operation mode of the ADC is dictated by a command byte, as shown below.

Command Byte										
MSB	6	5	4	3	2	1	LSB			
SD	C2	C1	C0	PD1	PD0	х	Х			
SD: Single-Ended/ Differential Inputs 0: Differential Inputs 1: Single-Ended Inputs	C[2:0]: C	Channel S	elections	PD[1:0]: Power-Down S 00: Power Down Betwee 01: Internal Reference C 10: Internal Reference C 11: Internal Reference C	en ADC Conversions DFF and ADC ON DN and ADC OFF	Unused	Unused			

	Channel Selection Control											
SD	C2	C1	C0	CH0	CH1	CH2	СНЗ	CH4	CH5	CH6	CH7	СОМ
0	0	0	0	+IN	-IN	x	X	х	x	Х	х	х
0	0	0	1	Х	Х	+IN	-IN	х	x	Х	х	Х
0	0	1	0	х	х	x	X	+IN	-IN	х	x	х
0	0	1	1	Х	Х	х	х	Х	X	+IN	-IN	х
0	1	0	0	-IN	+IN	x	x	х	x	Х	х	Х
0	1	0	1	х	Х	-IN	+IN	х	x	х	x	х
0	1	1	0	Х	Х	х	х	-IN	+IN	Х	х	х
0	1	1	1	Х	Х	х	Х	Х	X	-IN	+IN	Х
1	0	0	0	+IN	Х	Х	Х	Х	Х	Х	Х	-IN

	Channel Selection Control												
1	0	0	1	x	х	+IN	x	х	x	x	x	-IN	
1	0	1	0	x	х	x	x	+IN	x	x	x	-IN	
1	0	1	1	Х	Х	x	X	х	x	+IN	х	-IN	
1	1	0	0	Х	+IN	X	х	Х	X	Х	х	-IN	
1	1	0	1	х	Х	x	+IN	х	x	х	X	-IN	
1	1	1	0	Х	Х	x	X	Х	+IN	Х	X	-IN	
1	1	1	1	х	Х	x	х	х	х	х	+IN	-IN	

Initiating Conversion

When the master device addresses the ADC for a write operation, the device activates its ADC section. It initiates analog-todigital conversions upon receiving BIT 4 of the command byte from the master. If the received command byte is correct, the ADC responds with an ACK (acknowledgment) condition.

Reading Data

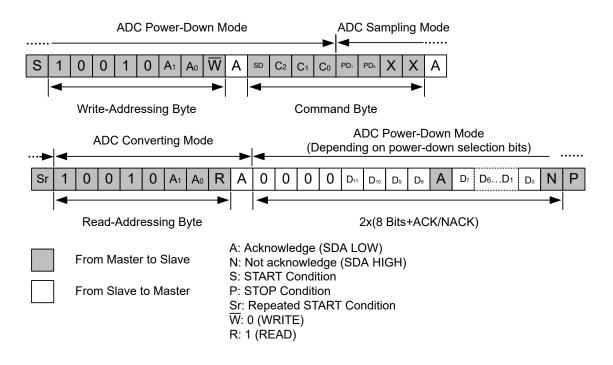
The device allows data to be read from it by read-addressing the device (setting the LSB of the address byte to 1) and then receiving the transmitted bytes. However, data can only be read from the device after a conversion has been initiated. The data returned from the ADC is provided in a 12-bit format, which is split into two bytes, Byte0 first and followed by Byte1. D11 is the MSB of the data word, and D0 is the LSB

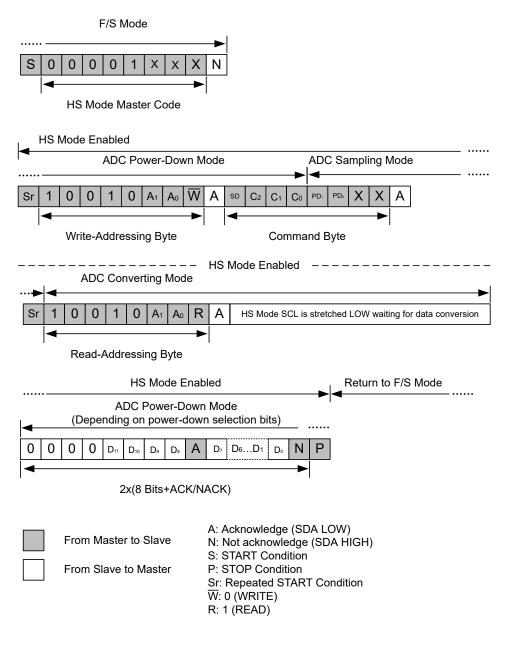
Reading Data Byte												
	MSB	6	5	4	3	2	1	LSB				
BYTE 0	0	0	0	0	D11	D10	D9	D8				
BYTE 1	D7	D6	D5	D4	D3	D2	D1	D0				

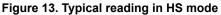
Reading in F/S mode

In Fast or Standard (F/S) mode of operation, the interaction between the master and the slave device is shown below. After reading the conversion data, it's possible for the master to issue a repeated START condition to the device. This action is taken to maintain bus operation for subsequent conversions of the ADC. Using a repeated START condition is considered an efficient way to perform continuous conversions without the need to release and reacquire control of the bus for each conversion cycle.

It should be noticed that the STOP after write command will be ignored in either Fast or Standard mode. The analog input will be sampled at the end of next repeated START command and converted on arrival of read command.




Figure 12. Typical reading in F/S mode

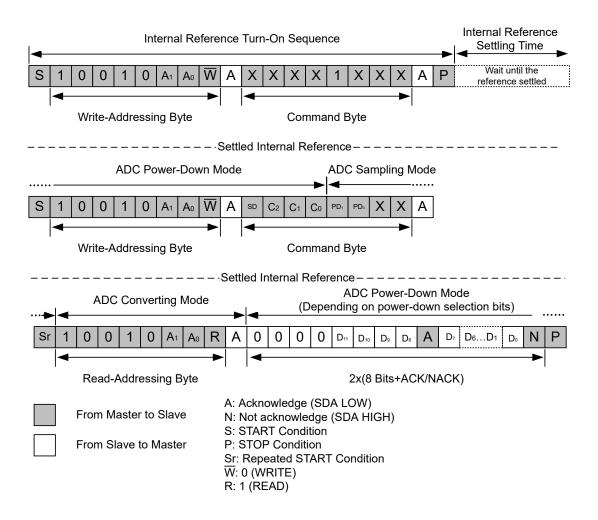

Reading in HS mode

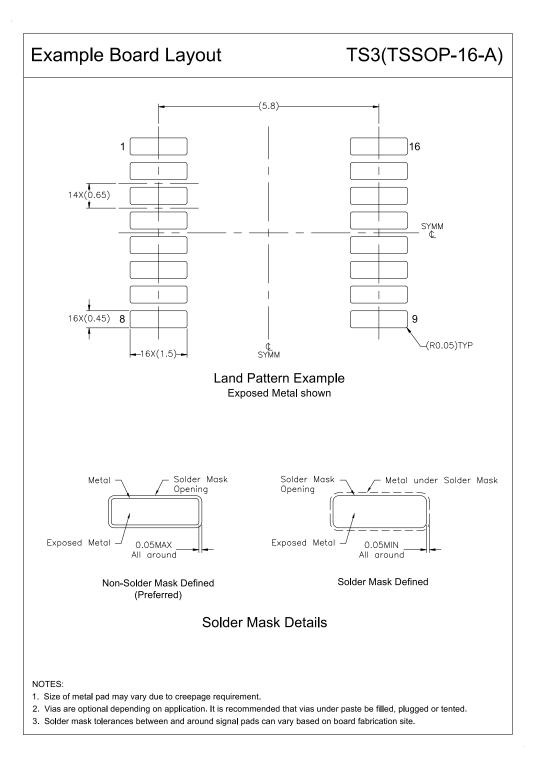
In High-Speed (HS) mode of operation, the data transfer rate is sufficiently fast that individual conversion codes can be read out one at a time. However, in HS mode, there isn't enough time for a single conversion to complete between the reception of a repeated START condition and the read-addressing byte. The device employs a clock-stretching mechanism. After the read-addressing byte has been fully received, the device holds the clock signal (SCL) LOW until the ongoing conversion is complete.

The figure belowed provides a example of a typical read sequence in High-Speed (HS) mode, including the transition from Fast or Standard (F/S) mode to HS mode. In some scenarios, it can be advantageous to continue operating in HS mode after reading a conversion result. To achieve this, it's recommended to issue a repeated START condition at the end of the read sequence instead of a STOP condition. This is because issuing a STOP condition would cause the device to revert to F/S mode. By using a repeated START condition, user can effectively signal to the device that wish to maintain the HS mode for subsequent operations, avoiding the transition back to F/S mode.

Reading with reference on/off

The default setting for the internal reference voltage in the ADC is off when the device is powered on. To control the state of the internal reference voltage (either turning it on or off), refer to command byte table for the appropriate configuration settings. It's should be noted that if you frequently toggle the reference voltage (whether internal or external) on and off, user must account for a sufficient settling time before initiating a standard conversion cycle. The necessary settling time can vary depending on the specific configuration used.

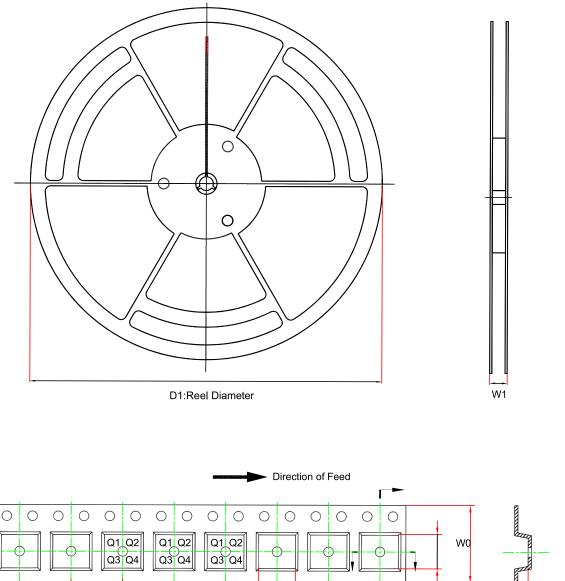


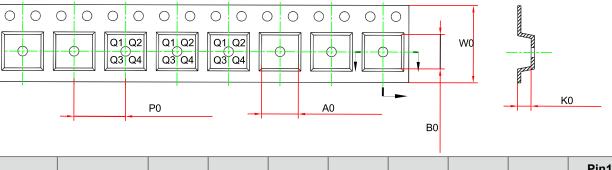

Figure 14. Typical reading in F/S mode with Reference Turn-On

Layout

Layout Example

The figure below shows the example board layout.

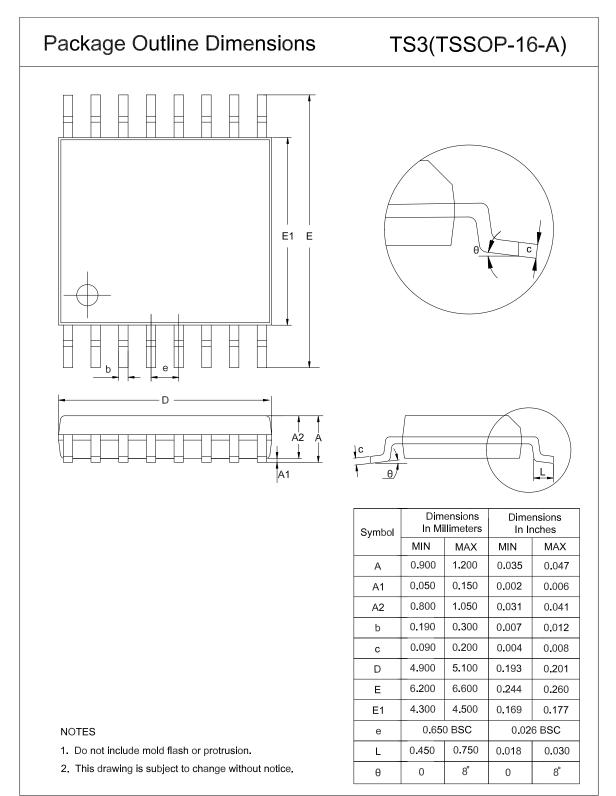




TPC502200

12-Bit 8-Channel SAR ADC with I²C Interface

Tape and Reel Information



Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPC502200- TS3R-S	TSSOP16	330	17.6	6.8	5.5	1.5	8.0	12.0	Q1

Package Outline Dimensions

TSSOP16

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPC502200-TS3R-S	−40 to 125°C	TSSOP16	02200	1	Tape and Reel, 3000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

TPC502200

12-Bit 8-Channel SAR ADC with I²C Interface

This page intentionally left blank