

Features

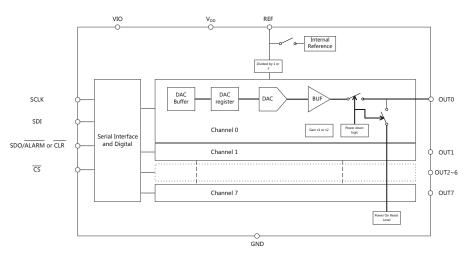
- High accuraccy
 - INL: typical ±1LSB at 16-bit Resolution
- Integrated 2.5V Internal Reference
 - Low Drift: 5ppm/°C
- Flexible output configuration
 - User selectable Gain: 1/2, 1, 2
 - Reset to Zero Scale or Midscale
- High output current capability: 20mA
- Serial Interfaces
 - 4 Wire SPI Compatible Serial Interface
 - Daisy Chain Operation
 - CRC Error Check
- Temperature Range: -40°C to +125°C
- Package: QFN 3X3-16, WLCSP 2.4X2.4-16

Applications

- Industrial automation
- Optical networking
- Data Acquisition Systems

Description

The TPC219 is faimily of high accuracy DACs with 16, 14 and 12bit resolution which are all pin-compatible.


The device includes a 2.5V internal reference, which can be used to reduce system complexity

Several gain options could be selected to provide different full scale output voltages, 1.25V, 2.5V and 5V.

The device operates under a single analog supply, and has seperate VIO supply for digital communication. The communication is performed through a serial interface, and can operate under wide range VIO supply voltage.

A power on reset circuit is intergraged to maintain the DAC output at zero scale or midscale.

The device is characterized for temeprature range of -40°C to 125 °C. And is available in small package of QFN and WLCSP.

Typical Application Circuit

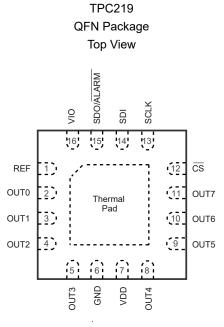
Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Recommended Operating Conditions	6
Thermal Information	7
Electrical Characteristics	8
Timing Requirements	12
Timing Diagrams	12
Typical Performance Characteristics	14
Detailed Description	16
Overview	16
Functional Block Diagram	16
Feature Description	16
Functional Modes	17
Serial Interface	19
Register Table	19
Application and Implementation	24
Application Information	24
Typical Application	24
Layout	25
Layout Guideline	25
Tape and Reel Information	26
Package Outline Dimensions	27
QFN3X3-16	27
WLCSP	28
Order Information	29

Product Family Table

Order Number	Resolution	Reference	RESET	SDO or CLR Operation	Package
TPC2190-QFNR	16	Internal/External	0	SDO	QFN3X3-16
TPC2190-WLPR	16	Internal/External	0	SDO	WLCSP2.4X2.4-16
TPC2190M-QFNR	16	Internal/External	Midscal	SDO	QFN3X3-16
TPC2192-QFNR (1)	12	Internal/External	0	SDO	QFN3X3-16
TPC2192-WLPR	12	Internal/External	0	SDO	WLCSP2.4X2.4-16

Note:


(1) Could provide samples in 2 months.

Revision History

Date	Revision	Notes
2023/6/5	Rev.A.0	Released Version.

Pin Configuration and Functions

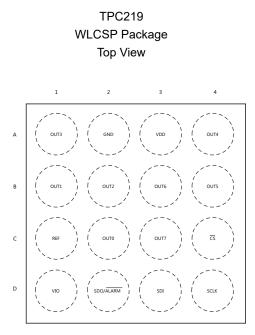


Table 1. Pin Functions

	PIN			DECODIDITION
NO. WQFN	NO. WLCSP	NAME	TYPE	DESCRIPTION
1	C1	REF	I/O	Reference output pin(default). Can be used as reference inpput pin when using external reference.
2	C2	OUT0	0	DAC channel 0 output.
3	B1	OUT1	0	DAC channel 1 output.
4	B2	OUT2	0	DAC channel 2 output.
5	A1	OUT3	0	DAC channel 3 output.
6	A2	GND	GND	Ground pin.
7	A3	VDD	PWR	Analog supply pin.
8	A4	OUT4	0	DAC channel 4 output.
9	B4	OUT5	0	DAC channel 5 output.
10	B3	OUT6	0	DAC channel 6 output.
11	C3	OUT7	0	DAC channel 7 output.
12	C4	CS	I	Frame synchronization signal for SPI interface.
13	D4	SCLK	I	Clock input for SPI interface.
14	D3	SDI	I	Data input for SPI interface.
15	D2	SDO/ALARM	0	TPC216X: Data output for SPI interface. It is in high impedance when /CS is high. And the pin can also be configured as /Alarm pin, which is open-drain output to indicate a CRC or reference alarm event.

	PIN			DESCRIPTION	
NO. WQFN	NO. WLCSP	NAME	TYPE	DESCRIPTION	
		LR	I	TPC216XC: A low value on /CLR pin clears DAC registers and output to the reset value. A high value on /CLR pin causes the device to exit clear mode.	
16	D1	VIO	PWR	IO supply pin.	
-	-	Thermal Pad	-	Thermal pad should be connected to PCB ground plane.	

Specifications

Absolute Maximum Ratings ⁽¹⁾

		MIN	MAX	UNIT
Supply Voltage	VDD to GND	-0.3	6	V
Supply Voltage	VIO to GND	-0.3	6	V
	DAC outputs to GND	-0.3	VDD + 0.3	V
Pin voltage	REF to GND	-0.3	VDD + 0.3	V
	Digital pins to GND	-0.3	VIO + 0.3	V
Input current	Input current to any pin excep supply pins	-10	10	mA
	Junction, TJ	-40	150	°C
Temperature	Storage, Tstg	-60	150	C°

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	4	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 ⁽²⁾	1.5	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
VDD	Analog supply voltage	2.7		5.5	V
VIO	Digital IO supply voltage	1.7		5.5	V
Digital input voltage	Digital input voltage	0		VIO	V
	Reference divider disabled	1.2		(VDD-0.2)/2	V
VREFIN	Reference divider enabled	2.4		VDD-0.2	V
	Reference divider disabled	1.2		VDD/2	V

		MIN	NOM	MAX	UNIT
	Reference divider enabled	2.4		VDD	V
TJ	Operating Junction temperature	-40		125	°C

Thermal Information

Package Type	θ _{JA}	θյς	Unit
QFN3X3-16	33	29.5	°C/W
WLCSP	68	0.3	°C/W

Electrical Characteristics

all minimum/maximum specifications at V DD =2.7 to 5.5V, VIO =1.7 to 5.5V , V_{REFIN} =1.25 to 5.5V, R_{LOAD} =2k Ω to GND, C_{LOAD} =200pF to GND, digital inputs at V_{IO} or GND, T_{J} = -40°C to +125°C and all typical specifications at $T_{J}J$ = 25°C.

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
STATIC PERFORM	MANCE	1	1	1	4	
-	nance specified with DAC output	s unloaded for all gain options, ເ	unless oth	erwise not	ed. End po	int fit
between codes. 16	6-bit: Code 256 to 65280					
Resolution			16			Bits
DNL (TPC2190)	Differential nonlinearity		-1	±0.5	1.5	LSB
DNL (TPC2192)	Differential nonlinearity		-1	±0.5	1	LSB
IN II. (TE 00 (00)	Integral nonlinearity	V _{DD} 3.3~5.5V	-2.5	±0.5	2.5	LSB
INL (TPC2190)	Integral nonlinearity	V _{DD} 2.7~3.3V	-3.5	±0.5	3.5	LSB
INL (TPC2192)	Integral nonlinearity		-1	±0.5	1	LSB
TUE	Total unadjusted error	REF-DIV=0		±0.05	±0.2	%FSR
		REF-DIV=1		±0.05	±0.3	%FSR
OE	Offset error	All Gians		±0.75	±2.5	mV
	Offset error temperature drift			±1.5		uV/°C
GE	Gain error	REF-DIV=0		±0.05	±0.1	%FSR
		REF-DIV=1		±0.05	±0.2	%FSR
	Gain error temperature drift			±1.2		ppm of FSR/°C
ZSE	Zero-scale error	DAC code = zero scale		0.5	2.5	mV
	Zero-scale error temperature drift			±1.5		uV/°C
FSE	Full-scale error	REF-DIV=0		±0.05	±0.15	%FSR
		REF-DIV=1		±0.05	±0.25	%FSR
	Full-scale error temperature drift			±2		ppm of FSR/°C
OUTPUT CHARAG	CTERISTICS	1		1		
		Gain = 2 (BUFF-GAIN = 1, REF-DIV = 0)	0		2 x V REF	V
Voltage range		Gain = 1 (BUFF-GAIN = 1, REF-DIV = 1)	0		V REF	v
		Gain =1/2 (BUFF-GAIN = 0, REF-DIV = 1)	0		1/2 x V REF	V
		to GND or VDD (unloaded)		0.004		V
Output voltage headroom		to GND or VDD (-10 mA ≤ IOUT ≤ 10 mA)	0.3			V

P	ARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Short circuit current		DAC code = full scale. Output shorted to GND		28		mA
(1)		DAC code = zero scale. Output shorted to VDD		25		mA
C	Capacitive load stability	RLOAD=∞	0		2	
CL	(2)	RLOAD=2kΩ	0		10	nF
RL	Clamp resistance			1		kΩ
Load regulation		DAC code = midscale, -10 mA <= IOUT<= 10 mA		85		μV/mA
DC output impedance		DAC code = midscale		0.085		Ω
DYNAMIC PERFOR	RMANCE					
		1/4 to 3/4 scale and 3/4 to 1/4 scale settling to ±2 LSB V				
Tst Output voltage settling	Output voltage settling time	DD =5.5V,V REFIN		6		μs
		=2.5V,GAIN=2				
		-2.3V,GAIN-2				
		DD				
	Slew rate	=5.5V,V		0.8		V/µs
		REFIN				
		=2.5V,GAIN=2 , 10% to 90%				
		0.1 Hz to 10 Hz, midscale code,V				
Vn	Output noise	DD =5.5V,V		17		μVpp
		REFIN				
		=2.5V,GAIN=2				
Output noise density		1kHz, midscale code,V				
		DD				
		=5.5V,V		85		
		REFIN				nV/√Hz
		=2.5V,GAIN=2				
		10kHz, midscale code,V				
		DD		64		
		=5.5V,V				

	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
		REFIN				
		=2.5V,GAIN=2				
		1kHz, midscale code,V				
		DD				
		=5.5V,V		50		
		REFIN				
		=2.5V,GAIN=1				
		10kHz, midscale code,V				-
		DD				
		=5.5V,V		50		
		REFIN				
		=2.5V,GAIN=1				
		Midscale code, frequency				
		=60 Hz,				
PSRRac	AC PSRR	amplitude = 200 mVPP		76		dB
		superimposed on V				
		DD				
PSRRdc	DC PSRR	Midscale code,VDD=		20		uV/V
		5V±10%				
	Code change glitch impulse	1 LSB change around major carrier		2.5		nV-s
		DACx-PWDWN 1 to 0				
		transition. DAC code = full				
	Power-up time	scale. VDD = 5.5 V, VREFIN		14.2		μs
		= 2.5 V, Gain = 2				
		(3)				
		DAC code = zero scale. VDD				
	Power-down glitch amplitude	= 5.5 V, VREFIN = 2.5 V,		25		mV
		Gain = 2. CLOAD = 50 pF 1/4 to 3/4 scale and 3/4 to				
		1/4 to 3/4 scale and 3/4 to 1/4 scale				
	Overshot/Downshot	VDD=5.5V,VREFIN=2.5V,GAI				
		N=2				
		Measured DAC output at				
	Channel-to-channel AC	midscale, Code 32 to full-				nV-s
	crosstalk	scale swing on asjacent channel				
		Measured DAC output at				
	Channel-to-channel DC	midscale, all other DAC		1		μV
	crosstalk	outputs at full-scale, Gain=1				

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		Measured DAC output at midscale, all other DAC outputs at full-scale, Gain=2		10		μV
INTERNAL RE	FERENCE CHARACTERISTICS					
VREFOUT	Internal referencel voltage	TA = 25°C	2.494	2.5	2.506	V
тс	Internal reference temperature coefficient	TJ = -40°C to 125°C		8		ppm/°C
	Internal reference impedance			0.1		Ω
	Internal reference output noise	0.1 Hz to 10 Hz		15		μVPP
	Internal reference noise density	10 kHz, REFLOAD = 10 nF		370		nV/ sqrtHz
	Internal reference load current			±5		mA
	refierence Load regulation	source and sink		100		uV/mA
	Internal reference load cap	actual capacitance	300		2200	nF
EXTERNAL RI	EFERENCE CHARACTERISTICS				1	
		V				
	Referencel input current	REFIN		25		uA
		=2.5V				
	Referencel input impedance			100		kΩ
	Referencel input capacitance			5		pF
DIGITAL INPU	T CHARACTERISTICS				1	1
VIH	High-level input voltage		0.7 × VIO			V
VIL	Low-level input voltage				0.3 × VIO	V
	Input current			±2		μA
	Input pin capacitance			2		pF
DIGITAL OUT	PUT CHARACTERISTICS					_
VOH	High-level output voltage	ILOAD = 0.2 mA	VIO – 0.4			V
VOL	Low-level output voltage	ILOAD = 0.2 mA			0.4	V
	Output pin capacitance			4		pF
POWER CON	SUMPTION CHARACTERISTICS					
IVDD	VDD supply current	Active mode. Internal reference enabled. Gain = 1. DAC code = full scale. Outputs unloaded. SPI static		5	6	mA

P	ARAMETER	TEST CONDITIONS	TEST CONDITIONS MIN				
		Active mode. Internal reference disabled. Gain = 1. DAC code = full scale. Outputs unloaded. SPI static		4.5	5.5		
		Power-down		15			
IVIO	VIO supply current			6.8	15	μA	

Timing Requirements

all minimum/maximum specifications at V DD =2.7 to 5.5V, VIO =1.7 to 5.5V , V_{REFIN} =1.25 to 5.5V, R_{LOAD} =2k Ω to GND, C_{LOAD} =200pF to GND,digital inputs at V_{IO} or GND, T_{J} = -40°C to +125°C and all typical specifications at $T_{J}J$ = 25°C.

		MIN	NOM	MAX	UNIT
SPI TIMING REQUIREMEN	TS	·		• •	
f(SCLK)	SCLK frequency			20	MHz
t(SCLKHIGH)	SCLK high time	23			ns
tSCLKLOW	SCLK low time	23			ns
t(SDISU)	SDI setup time	7			ns
t(SDIHD)	SDI hold time	7			ns
t(SDOTOZ)	SDO driven to tri-state	0		15	ns
t(SDOTOD)	SDO tri-state to driven	0		18	ns
t(SDODLY)	SDO output delay	0		18	ns
t(CSSU)	CS setup time	10			ns
t(CSHD)	CS hold time	20			ns
t(CSHIGH)	CS high time	20			ns

Timing Diagrams

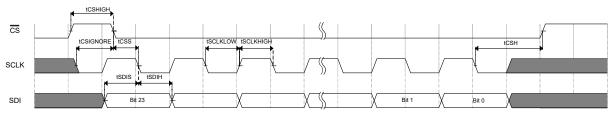


Figure 1. SPI Write Timing Diagram

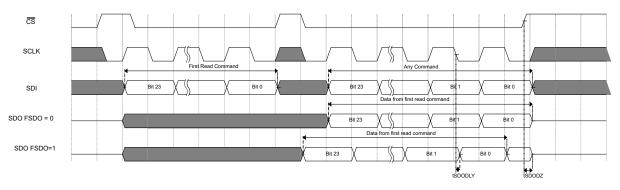
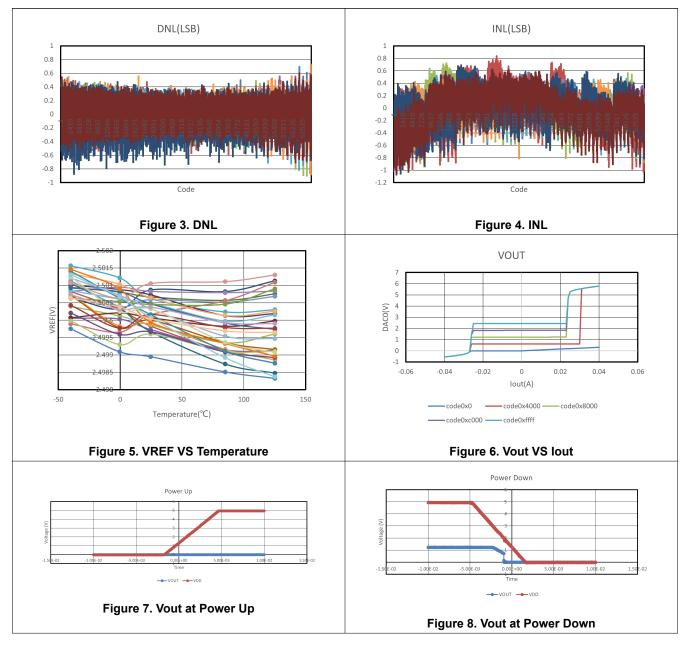
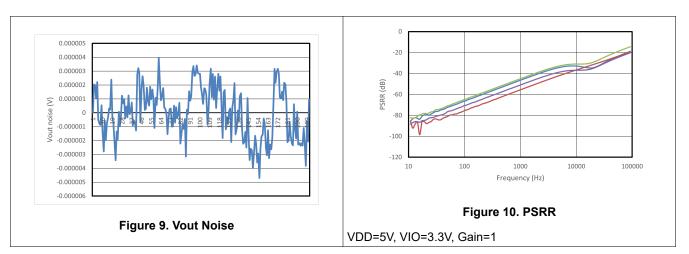



Figure 2. SPI ReadTiming Diagram



Typical Performance Characteristics

At TA = 25°C, VDD = 5.5 V, Internal Reference = 2.5 V, Gain = 2, DAC outputs unloaded, unless otherwise noted.

Detailed Description

Overview

The TPC219X is a pin-compatible family of 8 channel, high accurate, voltage-output digital-to-analog converters (DACs), with 16-, 14- and 12-bit resolution. The devices provide a 2.5 V internal reference. Also output range can be selected to be 1.25 V (gain = $\frac{1}{2}$), 2.5 V (gain = 1) or 5 V(gain = 2).

Functional Block Diagram

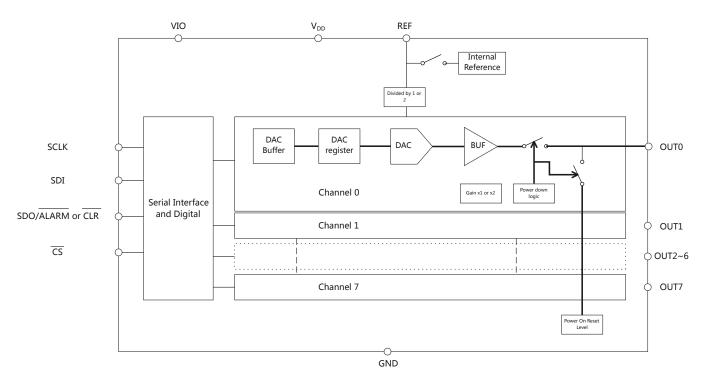


Figure 11. Functional Block Diagram

Feature Description

DAC transfer function

The DAC output voltage is given by following equation

$$V_{OUT} = \frac{CODE}{2^n} \times \frac{V_{REF}}{DIV} \times GAIN$$

CODE = decimal value of the binary code in the DAC register.

n: DAC resolution bits.

VREF = DAC reference voltage.

DIV: 1 or 2 as set by REF-DIV bit.

Gain: 1 or 2 as set bu BUFF-GAIN bit.

(1)

DAC Register Structure

Data written to the DAC data registers is initially stored in the DAC buffer registers. And then transfer of data from the DAC buffer registers to the active DAC registers, can be selected to happen immediately (asynchronous mode) or initiated by an LDAC trigger (synchronous mode). Once the DAC active registers are updated, the DAC outputs change to the new values. When a DAC Data register is read, the value held in the DAC buffer register is returned (not the value in the DAC active register).

The SYNC-EN bit controls the update mode for each DAC channel. In asynchronous mode, writing to the DAC data register results in an immediate update of the DAC active register and DAC output on the CS rising edge. In synchronous mode, writing to the DAC data register does not update the DAC output, but the update happens when an LDAC trigger event is generated through the LDAC bit. The synchronous update mode can update multiple DAC outputs imultaneously.

A DAC broadcast register is proved to simultaneously update multiple DAC outputs with the same value by a single register write. Each DAC channel can be configured to be updated or not by a broadcast command, through the corresponding DAC-BRDCAST-EN bit. A register write to the BRDCAST-DATA register forces selected DAC channels that have been configured for broadcast operation to update their outputs. The DAC ouputs update to the broadcast value on CS rising edge independently of their synchronous mode configuration.

CLEAR Operation

The $\overline{\text{CLR}}$ pin can update multiple DAC outputs to the clear value simultaneously: zero code or midscale code (for different parts). Channels can be independently configured to update or remain unaffected by the $\overline{\text{CLR}}$ pin

Reference

The device provides a internal 2.5V reference, which is enabled by default after power up. The internal reference is available on the REF pin. And External reference is supported by disabling the enable reference by CONFIG register.

The reference voltage from the internal reference or an external one can be divided by a factor of two by setting the REF-DIV bit.

Reset Options

After power up, and the V_{DD} and V_{IO} supplies have settled, the Power On Reset (POR) function causes all registers to initialize to their default values. And DAC output remains at the power-up voltage.

A software reset is provided by writing the reserved code 0x1010 to SOFT-RESET bits.

Functional Modes

Stand Alone Operation

A serial interface access cycle can be initiated by asserting the $ov\overline{CS}$ pin low.

SDI data are clocked on SCLK falling edges. A regular serial interface access cycle is 24 bits long with error checking disabled and 32 bits long with error checking enabled.

If the access cycle contains more than the minimum clock edges, only the last 24 or 32 bits are used by the device.

Daisy Chain Operation

For systems that contain more than one devices, the SDO pin can be used to daisy-chain them together. Daisy-chain operation is useful in reducing the number of serial interface lines.

By connecting the SDO output of the first device to the SDI input of the next device in the chain, a multiple-device interface is constructed. Each device in the system requires 24 clock pulses. As a result the total number of clock cycles must be equal to 24 × N, where N is the total number of devices in the daisy chain.

The first falling edge on the CS pin starts the operation cycle. If more than 24 SCLK pulses are applied while the CS pin is kept low, the data ripples out of the shift register and is clocked out on the SDO pin either on the falling edge or rising edge of SCLK according to the FSDO bit.

Frame Error Checking

Error checking is provide that can be used to check the integrity of SPI data communication. This feature can be enabled by setting the CRC-EN bit.

The error checking scheme is based on the CRC-8-ATM (HEC) polynomial $x^8 + x^2 + x + 1$ (that is, 100000111).

When error checking is enabled, the serial interface access cycle width is 32 bits. The normal 24-bit SPI data is appended with an 8-bit CRC polynomial by the host processor before feeding it to the device.

BIT	FIELD	DESCRIPTION			
31	RW	Identifies the communication as a read or write command to the addressed register. R/W = 0 sets a write operation. R/W = 1 sets a read operation.			
30	CRC-ERROR	Reserved bit. Set to zero.			
29:28	Reserved	Reserved bits. Must be filled with zeros.			
27:24	A[3:0]	Register address. Specifies the registe to be accessed during the read or write operation.			
23:8	DI[15:0]	Data cycle bits. If a write command, the data cycle bits are the values to be written to the register with address A[3:0]. If a read command, the data cycle bits are don't care values.			
7:0	CRC	8-bit CRC polynomial.			

Table 2. Error Checking Serial Interface Access Cycle

The device decodes the 32-bit access cycle to compute the CRC remainder on CS rising edges. If no error exists, the CRC remainder is zero and data are accepted by the device.

A write operation failing the CRC check causes the data to be ignored by the device. After the write command, a second access cycle can be issued to determine the error checking result (CRC-ERROR bit) on the SDO pin

Table 3. Write Operation Error Checking Cycle

BIT	FIELD	DESCRIPTION
31	RW	Echo RW from previous access cycle (RW = 0).
30	CRC-ERROR	Returns a 1 when a CRC error is detected, 0 otherwise.
29:28	Reserved	Echo bits 29:28 from previous access cycle (all zeros).
27:24	A[3:0]	Echo address from previous access cycle.
23:8	DO[15:0]	Echo data from previous access cycle.

BIT	FIELD	DESCRIPTION
7:0	CRC	Calculated CRC value of bits 31:8.

A read operation must be followed by a second access cycle to get the requested data on the SDO pin. The error check result (CRC-ERROR bit) from the read command is output on the SDO pin.

Table 4. Read Operation Error Checking Cycle

BIT	FIELD	DESCRIPTION
31	RW	Echo RW from previous access cycle (RW = 1).
30	CRC-ERROR	Returns a 1 when a CRC error is detected, 0 otherwise.
29:28	Reserved	Echo bits 29:28 from previous access cycle (all zeros).
27:24	A[3:0]	Echo address from previous access cycle.
23:8	DO[15:0]	Readback data requested on previous access cycle.
7:0	CRC	Calculated CRC value of bits 31:8.

Power Down Mode

The device's output amplifiers and internal reference can be independently powered down through the CONFIG register. At power-up all output channels and the device internal referece are active by default. A DAC output channel in power-down mode is connected internally to GND through a 1 k Ω resistor.

Serial Interface

The TPC219 family supports SPI-compatible interface.

Register Table

DECIOT	TV		ADDRE		DATA BITS														
REGIST ER		RESET	SS BITS	D1 5	D1 4	D1 3	D1 2	D1 1	D1 0	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
NOP	W	16'h0000	7'h00		NOP														
DEVICE ID	R	-	7'h01		DEVICE ID									VEF N	-				
SYNC	R/ W	16'hFF0 0	7'h02		DACx-BRDCAST-EN DACx-SYNC-EN														
CONFIG	R/ W	16'h0000	7'h03		Reserve d La La CR CR CE DO DACX-PWDWN														

			ADDRE								DATA	BITS	5						
REGIST ER	TY PE	RESET	SS	D1	D1	D1	D1	D1	D1	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			BITS	5	4	3	2	1	0	00	00	01	00				02		
GAIN	R/ W	16'h0000 16'h00F F	7'h04		CL CL R-4 R0 RE TO TO F 7- 3- DIV MS MS EN K K K														
TRIGGE R	w	16'h0000	7'h05		Reserved LD AC SOFT-RESE											ESET[3:0]		
BRDCA ST	R/ W	16'h0000	7'h06		BRDCAST-DATA[15:0]														
STATUS	R/ W	16'h0000	7'h07		Reserved										RE FA LM				
DAC0	R/ W	16'h0000 16'h8000	7'h08							DAC	0-DA	TA[15	5:0]						
DAC1	R/ W	16'h0000 16'h8000	7'h09							DAC	C1-DA	TA[15	5:0]						
DAC2	R/ W	16'h0000 16'h8000	7'h0a							DAC	2-DA	TA[15	5 : 0]						
DAC3	R/ W	16'h0000 16'h8000	7'h0b							DAC	3-DA	TA[15	5 : 0]						
DAC4	R/ W	16'h0000 16'h8000	7'h0c							DAC	:4-DA	TA[15	5 : 0]						
DAC5	R/ W	16'h0000 16'h8000	7'h0d		DAC5-DATA[15 : 0]														
DAC6	R/ W	16'h0000 16'h8000	7'h0e							DAC	C6-DA	TA[15	5 : 0]						
DAC7	R/ W	16'h0000 16'h8000	7'h0f							DAC	7-DA	TA[15	5 : 0]						

NOP Register

Bit	Field	Туре	Reset	Description
15:0	NOP	w	0x0000	No operation. Write 0000h for proper no-operation
10.0				command

Device ID Register

Bit	Field	Туре	Reset	Description	
	15:2 DEVICEID R		Device ID:		
15:2		R		D15 Reserved - 0	
15.2	DEVICEID				D14:12 Resolution - 000 (16-bit); 001 (14-bit); 010
				(12-bit)	

Bit	Field	Туре	Reset Description		
			D11:8 Channels - 1000 (8 channels)		
				D7 Reset - 0 ; 1 reset- to-midscale)	
				D6:2 Reserved - 00101	
1:0	VERSIONID	R	10	Version ID. Subject to change	

Sync Register

Bit	Field	Туре	Reset	Description
15	DAC7-BRDCAST-EN	R/W	1	
14	DAC6-BRDCAST-EN	R/W	1	When est to 1 the corresponding DAC is set to
13	DAC5-BRDCAST-EN	R/W	1	When set to 1 the corresponding DAC is set to update its output after a serial interface write to the
12	DAC4-BRDCAST-EN	R/W	1	BRDCAST register.
11	DAC3-BRDCAST-EN	R/W	1	When cleared to 0 the corresponding DAC output
10	DAC2-BRDCAST-EN	R/W	1	remains unaffected after a serial interface write to the
9	DAC1-BRDCAST-EN	R/W	1	BRDCAST register.
8	DAC0-BRDCAST-EN	R/W	1	
7	DAC7-SYNC-EN	R/W	0	
6	DAC6-SYNC-EN	R/W	0	
5	DAC5-SYNC-EN	R/W	0	When set to 1 the corresponding DAC output is set to update in response to an LDAC trigger (synchronous
4	DAC4-SYNC-EN	R/W	0	mode).
3	DAC3-SYNC-EN	R/W	0	When cleared to 0 the corresponding DAC output
2	DAC2-SYNC-EN	R/W	0	is set to update immediately on a CS rising edge
1	DAC1-SYNC-EN	R/W	0	(asynchronous mode).
0	DAC0-SYNC-EN	R/W	0	

Config Register

Bit	Field	Туре	Reset	Description
15:14	Reserved		00 Reserved for factory use	
13	ALM-SEL	R/W	0	ALARM Select 0:ALARMpin is CRC-ERROR 1: ALARM pin is REF-ALARM
12	ALM-EN	R/W	0	Configure SDO/ALARM pin. When 1: SDO/ALARM pin is an active-low, open-drain, alarm pin. An external 10 kΩ pullup resistor to V _{lo} required. FSDO and DSDO bits are ignored. When 0: SDO/ALARM pin is a serial interface, push-pull, SDO pin
11	CRC-EN	R/W	0	CRC enable bit. Set to 1 to enable CRC. Set to 0 to disable
10	FSDO	R/W	0	Fast SDO bit (half-cycle speedup). When 0, SDO updates on an SCLK rising edge. When 1, SDO updates a half-cycle earlier, during an SCLK falling edge.

Bit	Field	Туре	Reset	Description
9	DSDO	R/W	0	Disable SDO bit. When1, SDO is always tri-stated. When 0, SDO is driven while $\overline{\text{CS}}$ is low, and tri-stated while $\overline{\text{CS}}$ is high
8	REF-PWDWN	R/W	0	When set to 1 disables the device internal reference
7	DAC7-PWDWN	R/W	0	
6	DAC6-PWDWN	R/W	0	
5	DAC5-PWDWN	R/W	0	
4	DAC4-PWDWN	R/W	0	When set to 1 the corresponding DAC is set in power-
3	DAC3-PWDWN	R/W	0	down mode and its output is connected to GND through a 1 kΩ internal resistor.
2	DAC2-PWDWN	R/W	0	
1	DAC1-PWDWN	R/W	0	
0	DAC0-PWDWN	R/W	0	

Gain Register

Bit	Field	Туре	Reset	Description
15:11	Reserved	_	0	Reserved for factory use.
10	Reserved / CLR-4TO7- MSK	R/W	0	For non-clear pin device: Reserved for factory use. For clear pin device. When cleared to 0 the
9	Reserved / CLR-0TO3- MSK	R/W	0	corresponding DAC group is set to clear in response to a logic-low value on the CLR pin. When set to 1 the corresponding DAC group remains unaffected by the CLR pin.
8	REFDIV-EN	R/W	0/1	When set to 1 the reference voltage is internally divided by a factor of 2. When cleared to 0 the reference voltage is unaffected.
7	BUFF7-GAIN	R/W	0/1	
6	BUFF6-GAIN	R/W	0/1	
5	BUFF5-GAIN	R/W	0/1	 When set to 1 the buffer amplifier for corresponding DAC has a gain of 2. Default value for the default
4	BUFF4-GAIN	R/W	0/1	middle scale output devices.
3	BUFF3-GAIN	R/W	0/1	When cleared to 0 the buffer amplifier for
2	BUFF2-GAIN	R/W	0/1	corresponding DAC has a gain of 1. Default value for
1	BUFF1-GAIN	R/W	0/1	the default zero scale output devices.
0	BUFF0-GAIN	R/W	0/1	

Trigger Register

Bit	Field	Туре	Reset	Description
15:5	Reserved		0 Reserved for factory use.	
4	LDAC	w	0	Set this bit to 1 to synchronously load those DACs that have been set in synchronous mode in the SYNC register.

Bit	Field	Туре	Reset	Description
2.0		14/	0.40	When set to the reserved code 1010 resets the
3:0	SOFT-RESET[3:0]	W	0x0	device to its default state.

Broadcast Register

Bit	Field	Туре	Reset	Description				
15:0	BRDCAST-DATA[15:0]	R/W	0×0000	Writing to the BRDCAST register forces those DAC channels that have been set to broadcast in the SYNC register to update their active data register with the BRDCAST-DATA value. Data are MSB aligned in straight binary format and follows the format below: 16bit version: { DATA[15:0] } 14bit version: { DATA[13:0], x, x } 12bit version: { DATA[11:0], x, x, x, x } x - Don't care bits				

Status Register

Bit	Field	Туре	Reset	Description
15:1	Reserved	_	0 Reserved for factory use.	
0	REF-ALM	R	0	Reference alarm bit. Reads 1 when the difference between V _{REF} /DIV and V _{DD} is below the required minimum analog threshold. Reads 0 otherwise.

DAC Register (Address = 0x8 to 0xF)

Bit	Field	Туре	Reset	Description
15:0	DACx-DATA[15:0]	R/W	0x0000 or 0x8000	Stores the 16-, 14- or 12-bit data to be loaded to DACx in MSB aligned straight binary format. The default value is zero-code for default zero scale output version, midscale-code for the default middle scale output version. Data follows the format below: 16bit version: { DATA[15:0] } 14bit version: { DATA[13:0], x, x } 12 bit version: { DATA[11:0], x, x, x, x } x – Don't care bits

Application and Implementation

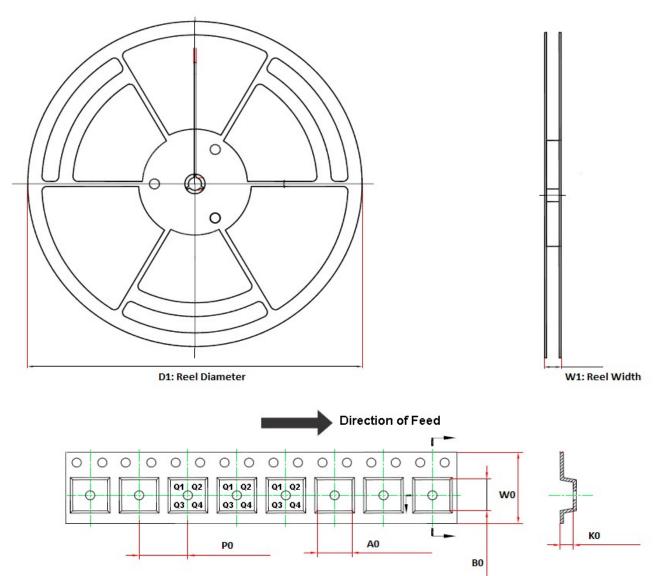
Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPC219 seris has high linearity, small package size and internal reference, which are suitable for applications such as optical networking, Test equipment, industrial automation and data acquisition systems.

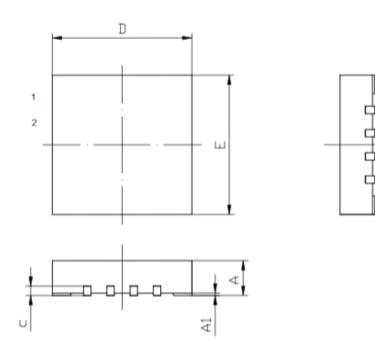
Typical Application

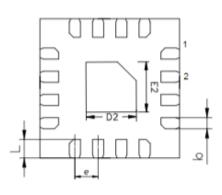

Layout

Layout Guideline

- Both input capacitors and output capacitors must be placed to the device pins as close as possible.
- It is recommended to bypass the input pin to ground with a 0.1 µF bypass capacitor.
- It is recommended to use wide trace lengths or thick copper weight to minimize I×R drop and heat dissipation.
- Exposed pad must be connected to the PCB ground plane directly, the copper area must be as large as possible.

Tape and Reel Information

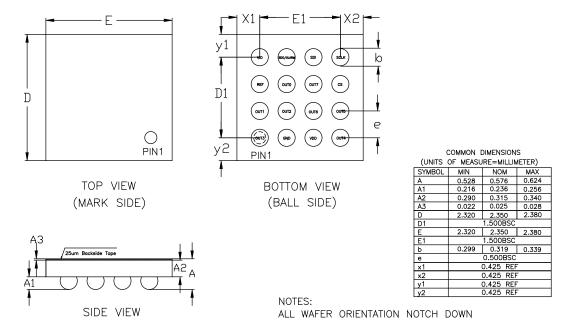



Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPC2190- QFNR	QFN3X3-16	330	17.6	3.3	3.3	1	8	12	Q1
TPC2190M- QFNR	QFN3X3-16	330	17.6	3.3	3.3	1	8	12	Q1
TPC2190- WLPR	WLCSP	178	12.2	2.6	2.6	0.73	4.0	8	Q1
TPC2192- WLPR	WLCSP	178	12.2	2.6	2.6	0.73	4.0	8	Q1

Package Outline Dimensions

QFN3X3-16

NOTES


1. Do not include mold flash or protrusion.

2. This drawing is subject to change without notice.

Symbol		ensions Ilimeters	Dimensions In Inches		
-	MIN	MAX	MIN	MAX	
A	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
b	0.180	0.300	0.007	0.012	
o	0.203	REF	0.008 REF		
D	2.900	3.100	0.114	0.122	
D2	0.700	0.900	0.028	0.035	
E	2.900	3.100	0.114	0.122	
E2	0.700	0.900	0.028	0.035	
e	0.50	0 BSC	0.020	BSC	
L	0.300	0.500	0.012	0.020	

WLCSP

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPC2190-QFNR	−40 to 125°C	QFN3X3-16	2190	1	Tape and Reel, 4000	Green
TPC2190M-QFNR	−40 to 125°C	QFN3X3-16	2190M	1	Tape and Reel, 4000	Green
TPC2190-WLPR	−40 to 125°C	WLCSP	190	1	Tape and Reel, 3000	Green
TPC2192-WLPR	−40 to 125°C	WLCSP	192	1	Tape and Reel, 3000	Green

(1) For future products, contact the 3PEAK factory for more information and sample. 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names("Trademarks") contained in this document/material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are results of design simulation or actual tests conducted under designated testing environment. Any differences in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Forward-Looking Statements. The information in this document/material may contain forward-looking statements, except for statements or descriptions of historical facts. These forward-looking statements are based upon our current understanding of our industry, management philosophy and certain assumptions and speculative calculations. These forward-looking statements are subject to risks and uncertainties and our actual results may differ. Please do not rely solely on the above information to make your business decisions.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including, without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights.