

## Features

- 16-bit, 8-channel ADC with Integrated Analog Frontend
- Sampling with 500 KSPS throughput Rate
- Independently Programmable Channel Inputs
  - True Bipolar Single-ended: ±12.288 V, ±10.24 V, ±6.144 V, ±5.12 V, ±3.072 V, ±2.56 V
  - Unipolar Single-ended: 0 V 12.288 V, 0 V 10.24
     V, 0 V 6.144 V, 0 V 5.12 V
  - True Bipolar Fully-differential: ±12.288 V, ±10.24 V, ±6.144 V, ±5.12 V
  - Configurable Analog Bandwidth: 15 kHz or 35 kHz
- Power Supply
  - Single Analog Supply: 5 V
  - Digital Supply: 1.71 V to 5 V
- Highly Integrated Analog Front-end
  - 1-MΩ Analog Input Impedance
  - Programmable Gain Amplifier
  - Analog Low-pass Filter
  - Internal Accurate Reference and Reference Buffer
  - ±30 V Analog Input Overvoltage Clamp Protection with 8-kV ESD
- Flexible Digital and Interface
  - Serial Interface Compatible with SPI
  - Daisy-chain Function
  - Channel Sequencer
- Integrated Diagnostic Function
  - Analog Input Open Detect with Manual or Auto Mode
  - Optional Cyclic Redundancy Check (CRC) Error Checking
  - AUX Input with Direct Connection to ADC Inputs
- Typical Performance
  - DNL: ±0.5 LSB
  - INL: ±1 LSB
  - SNR: 90.5 dB
  - SINAD: 90 dB
  - THD: -103 dB
- Package: TSSOP38 Package
- Wide Operating Temperature Range: -40°C to +125°C

### Applications

- Analog Input Modules
- Relay Protection
- Multi-channel Data Acquisition

### Description

The TPAFE51736S8 is an 8-channel, 16-bit, 500 kSPS sampling system based on a successive approximation register (SAR) analog-to-digital converter (ADC). The TPAFE51736S8 is highly integrated with an analog frontend for each channel, including an input overvoltage clamp, 1 M $\Omega$  input impedance, programmable gain amplifier (PGA), active low-pass filter, and ADC driver. Internal precision and low-drift reference with buffer make the device feasible for a compact data acquisition solution. The digital interface supports communication with various host controllers with SPI-compatible serial and daisy-chaining of multiple devices.

The TPAFE51736S8 can process true bipolar single-ended ±12.288 V, ±10.24 V, ±6.144 V, ±5.12 V, ±3.072 V, ±2.56 V, unipolar single-ended 0 V - 12.288 V, 0 V - 10.24 V, 0 V - 6.144 V, 0 V - 5.12 V, and true bipolar fully-differential ±12.288 V, ±10.24 V, ±6.144 V, ±5.12 V input signals, with single 5 V analog power supply. The 1 M $\Omega$  high input impedance simplified analog input design, and the device can be connected directly to sensors. The analog input overvoltage can protect the device up to ±30 V. The device offers a simple SPI-compatible serial interface and also supports daisy-chaining of multiple devices.

The device integrates various diagnostic functions to improve system robustness, like analog input open detection and CRC error checking on read and write data and registers.

The TPAFE51736S8 is available in the 38-lead TSSOP 9.7 mm x 4.4 mm package and operates from  $-40^{\circ}$ C to  $+125^{\circ}$ C.





# **Functional Block Diagram**



# **Table of Contents**

| Features                                                     | 1  |
|--------------------------------------------------------------|----|
| Applications                                                 | 1  |
| Description                                                  | 1  |
| Functional Block Diagram                                     | 2  |
| Product Family Table                                         | 5  |
| Revision History                                             | 5  |
| Pin Configuration and Functions                              | 6  |
| Specifications                                               | 8  |
| Absolute Maximum Ratings <sup>(1)</sup>                      | 8  |
| ESD, Electrostatic Discharge Protection                      | 8  |
| Recommended Operating Conditions                             | 8  |
| Thermal Information                                          | 8  |
| Electrical Characteristics                                   | 9  |
| Timing Requirements <sup>(1)</sup>                           | 16 |
| Typical Performance Characteristics                          |    |
| Detailed Description                                         | 23 |
| Overview                                                     | 23 |
| Functional Block Diagram                                     | 23 |
| Feature Description                                          |    |
| Device Functional Modes                                      |    |
| Register Maps                                                | 42 |
| Command Registers                                            | 43 |
| Program Registers                                            | 45 |
| Program Registers Map                                        | 47 |
| Auto-Scan Sequence Enable Register (address = 01h)           | 51 |
| Channel Power Down Register (address = 02h)                  | 52 |
| Device Features Selection Control Register (address = 03h)   | 54 |
| Range Select Registers (addresses 05h-0Ch)                   | 56 |
| Over Range Setting Registers (address 0Dh)                   | 57 |
| LPF Bandwidth Configuration Registers (address 0Eh)          | 58 |
| CRC Configure Register (address = 0Fh)                       | 59 |
| Alarm Overview Tripped-flag Register (address = 10h)         | 59 |
| Alarm Flag Registers: Tripped and Active (address = 11h-14h) | 60 |
| Alarm Threshold Setting Registers (addresses = 15h-3Ch)      | 61 |
| Command Read-Back Register (address = 3Fh)                   | 64 |
| Open Detect Enable Register (address = 78h)                  | 65 |



| Open Detected Register (address = 79h)         | 66 |
|------------------------------------------------|----|
| Open Detect Mode Register (address = 7Ah)      | 67 |
| Open Detect Threshold Register (address = 7Bh) | 67 |
| Status Register (address = 7Dh)                | 67 |
| Tape and Reel Information                      | 68 |
| Package Outline Dimensions                     | 69 |
| TSSOP38                                        | 69 |
| Order Information                              | 70 |
| IMPORTANT NOTICE AND DISCLAIMER                | 71 |



# Product Family Table

| Order Number      | Channels | Resolution | Throughput | Package |
|-------------------|----------|------------|------------|---------|
| TPAFE51736S8-TS7R | 8        | 16 Bits    | 500 kSPS   | TSSOP38 |

# **Revision History**

| Date       | Revision | Notes                    |
|------------|----------|--------------------------|
| 2024-12-26 | Rev.A.0  | Initial released version |



## **Pin Configuration and Functions**



#### Table 1. Pin Functions: TPAFE51736S8

|     | Pin    | Type <sup>(1)</sup> | Description                                                                                                                                                                                                                                                                |  |
|-----|--------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No. | Name   | Type (*)            | Description                                                                                                                                                                                                                                                                |  |
| 1   | SDI    | DI                  | Data input of the SPI interface                                                                                                                                                                                                                                            |  |
| 2   | RST/PD | DI                  | Hardware RST/PD with low logic input active.<br>This pin can perform a reset or power-down function depending on the low input<br>duration.                                                                                                                                |  |
| 3   | DAISY  | DI                  | Chain the data input during daisy-chain mode                                                                                                                                                                                                                               |  |
| 4   | REFSEL | DI                  | Active low logic input to enable the internal reference. When this pin is low, the internal reference is enabled and REFIO acts as an output pin. When this pin is high, the internal reference is enabled and REFIO acts as an input pin to apply the external input REF. |  |
| 5   | REFIO  | AIO                 | External reference input pin and internal reference output pin                                                                                                                                                                                                             |  |
| 6   | REFGND | Р                   | Reference ground pin. Connect this pin to AGND.                                                                                                                                                                                                                            |  |
| 7   | REFCAP | AO                  | Reference buffer output pin. Decouple this pin to AGND using a capacitor. The voltage on this pin is typically 4.096 V.                                                                                                                                                    |  |



|                   | Pin     | _ (1)                 |                                                                             |
|-------------------|---------|-----------------------|-----------------------------------------------------------------------------|
| No.               | Name    | – Type <sup>(1)</sup> | Description                                                                 |
| 8,28,29,<br>31,32 | AGND    | Р                     | Analog ground pins.                                                         |
| 9, 30             | AVDD    | Р                     | Analog supply pins.                                                         |
| 10                | AUX_IN  | AI                    | Auxiliary input channel: positive input.                                    |
| 11                | AUX_GND | AI                    | Auxiliary input channel: negative input.                                    |
| 12                | AIN_6P  | AI                    | Positive analog input for channel 6.                                        |
| 13                | AIN_6N  | AI                    | Negative analog input for channel 6.                                        |
| 14                | AIN_7P  | AI                    | Positive analog input for channel 7.                                        |
| 15                | AIN_7N  | AI                    | Negative analog input for channel 7.                                        |
| 16                | AIN_0P  | AI                    | Positive analog input for channel 0.                                        |
| 17                | AIN_0N  | AI                    | Negative analog input for channel 0.                                        |
| 18                | AIN_1P  | AI                    | Positive analog input for channel 1.                                        |
| 19                | AIN_1N  | AI                    | Negative analog input for channel 1.                                        |
| 20                | AIN_2N  | AI                    | Negative analog input for channel 2.                                        |
| 21                | AIN_2P  | AI                    | Positive analog input for channel 2.                                        |
| 22                | AIN_3N  | AI                    | Negative analog input for channel 3.                                        |
| 23                | AIN_3P  | AI                    | Positive analog input for channel 3.                                        |
| 24                | AIN_4N  | AI                    | Negative analog input for channel 4.                                        |
| 25                | AIN_4P  | AI                    | Positive analog input for channel 4.                                        |
| 26                | AIN_5N  | AI                    | Negative analog input for channel 5.                                        |
| 27                | AIN_5P  | AI                    | Positive analog input for channel 5.                                        |
| 34                | DVDD    | Р                     | Digital supply pins.                                                        |
| 35                | ALARM   | DO                    | ALARM function output. This pin can be float if alarm function is disabled. |
| 36                | SDO     | DO                    | This pin outputs serial conversion data.                                    |
| 37                | SCLK    | DI                    | This pin acts as the serial clock input for data transfers.                 |
| 38                | CS      | DI                    | Active low logic input; chip-select signal                                  |

(1) AI is analog input, GND is ground, P is power supply, REF is reference input/output, DI is digital input, DO is digital output, and CAP is decoupling capacitor pin.



# **Specifications**

### Absolute Maximum Ratings <sup>(1)</sup>

| Parameter            | Parameter                                    |      |              | Unit |
|----------------------|----------------------------------------------|------|--------------|------|
|                      | Analog Input Voltage (AINxP or AINxN) to GND | -30  | +30          | V    |
| Analog Voltage       | AUX_IN to GND                                | -0.3 | AVDD + 0.3 V | V    |
|                      | REFCAP or REFIO to REFGND                    | -0.3 | AVDD + 0.3 V | V    |
| D: :: I) / II        | Digital Input Voltage to GND                 | -0.3 | DVDD + 0.3 V | V    |
| Digital Voltage      | Digital Output Voltage to GND                | -0.3 | DVDD + 0.3 V | V    |
| Our shall (althe see | AVDD to GND                                  | -0.3 | 7            | V    |
| Supply Voltage       | DVDD to GND                                  | -0.3 | AVDD + 0.3 V | V    |
| TJ                   | Maximum Junction Temperature                 |      | 150          | °C   |
| T <sub>A</sub>       | Operating Temperature Range                  | -40  | 125          | °C   |
| T <sub>STG</sub>     | Storage Temperature Range                    | -65  | 150          | °C   |

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

### **ESD**, Electrostatic Discharge Protection

| Symbol                   | Parameter                 |                                       | Condition                             | Minimum Level | Unit |
|--------------------------|---------------------------|---------------------------------------|---------------------------------------|---------------|------|
|                          | Lines on Darth Mardal EOD | Analog input pins                     |                                       | ±8            | kV   |
| HBM Human Body Model ESD | All other pins            | ANSI/ESDA/JEDEC JS-001 <sup>(1)</sup> | ±4                                    | kV            |      |
| CDM                      | Charged Device Model ESD  | ·                                     | ANSI/ESDA/JEDEC JS-002 <sup>(2)</sup> | ±1            | kV   |

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

### **Recommended Operating Conditions**

| Parameter |                        | Min  | Тур | Max  | Unit |
|-----------|------------------------|------|-----|------|------|
| AVDD      | Analog Supply Voltage  | 4.75 | 5   | 5.25 | V    |
| DVDD      | Digital Supply Voltage | 1.71 | 3.3 | AVDD | V    |

### **Thermal Information**

| Package Type | θ <sub>JA</sub> | θյς  | Unit |
|--------------|-----------------|------|------|
| TSSOP38      | 68.8            | 19.9 | °C/W |



### **Electrical Characteristics**

All test conditions: AVDD = 5 V,  $V_{REF}$  = 4.096 V (internal), DVDD = 3 V,  $f_{SAMPLE}$  = 500 kSPS,  $T_A$  = -40 °C to 125 °C, unless otherwise noted.

| Parameter                                                                              | Test Conditions                         | Min                          | Тур | Max                      | Unit |  |
|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|-----|--------------------------|------|--|
| Analog Inputs                                                                          |                                         |                              |     |                          |      |  |
|                                                                                        | Input range = ±3 × V <sub>REF</sub>     | -3 × V <sub>REF</sub>        |     | 3 × V <sub>REF</sub>     |      |  |
|                                                                                        | Input range = ±2.5 × V <sub>REF</sub>   | −2.5 × V <sub>REF</sub>      |     | 2.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = ±1.5 × V <sub>REF</sub>   | −1.5 × V <sub>REF</sub>      |     | 1.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = ±1.25 × V <sub>REF</sub>  | −1.25 × V <sub>REF</sub>     |     | 1.25 × V <sub>REF</sub>  |      |  |
|                                                                                        | Input range = ±0.75 × V <sub>REF</sub>  | -0.75 × V <sub>REF</sub>     |     | 0.75 × V <sub>REF</sub>  |      |  |
| Input V <sub>IN</sub> Voltage Ranges <sup>(1)</sup><br>V <sub>IN</sub> = AINxP - AINxN | Input range = ±0.625 × V <sub>REF</sub> | -0.625 ×<br>V <sub>REF</sub> |     | 0.625 × V <sub>REF</sub> | V    |  |
|                                                                                        | Input range = 3 × V <sub>REF</sub>      | 0                            |     | 3 × V <sub>REF</sub>     |      |  |
|                                                                                        | Input range = 2.5 × V <sub>REF</sub>    | 0                            |     | 2.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = 1.5 × V <sub>REF</sub>    | 0                            |     | 1.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = 1.25 × V <sub>REF</sub>   | 0                            |     | 1.25 × V <sub>REF</sub>  |      |  |
|                                                                                        | Input range = ±3 × V <sub>REF</sub>     | -3 × V <sub>REF</sub>        |     | 3 × V <sub>REF</sub>     |      |  |
|                                                                                        | Input range = ±2.5 × V <sub>REF</sub>   | −2.5 × V <sub>REF</sub>      |     | 2.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = ±1.5 × V <sub>REF</sub>   | −1.5 × V <sub>REF</sub>      |     | 1.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = ±1.25 × V <sub>REF</sub>  | -1.25 × V <sub>REF</sub>     |     | 1.25 × V <sub>REF</sub>  |      |  |
| AIN_xP                                                                                 | Input range = ±0.75 × V <sub>REF</sub>  | -0.75 × V <sub>REF</sub>     |     | 0.75 × V <sub>REF</sub>  |      |  |
| Operating Input Range,<br>Positive Input <sup>(1)</sup>                                | Input range = ±0.625 × V <sub>REF</sub> | -0.625 ×<br>V <sub>REF</sub> |     | 0.625 × V <sub>REF</sub> | V    |  |
|                                                                                        | Input range = 3 × V <sub>REF</sub>      | 0                            |     | 3 × V <sub>REF</sub>     |      |  |
|                                                                                        | Input range = 2.5 × V <sub>REF</sub>    | 0                            |     | 2.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = 1.5 × V <sub>REF</sub>    | 0                            |     | 1.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = 1.25 × V <sub>REF</sub>   | 0                            |     | 1.25 × V <sub>REF</sub>  |      |  |
|                                                                                        | Input range = ±3 × V <sub>REF</sub>     | -3 × V <sub>REF</sub>        |     | 3 × V <sub>REF</sub>     |      |  |
|                                                                                        | Input range = ±2.5 × V <sub>REF</sub>   | −2.5 × V <sub>REF</sub>      |     | 2.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = ±1.5 × V <sub>REF</sub>   | −1.5 × V <sub>REF</sub>      |     | 1.5 × V <sub>REF</sub>   |      |  |
|                                                                                        | Input range = ±1.25 × V <sub>REF</sub>  | −1.25 × V <sub>REF</sub>     |     | $1.25 \times V_{REF}$    |      |  |
| AIN_xN                                                                                 | Input range = ±0.75 × V <sub>REF</sub>  | -0.75 × V <sub>REF</sub>     |     | 0.75 × V <sub>REF</sub>  |      |  |
| Operating Input Range,<br>Negative Input <sup>(1)</sup>                                | Input range = ±0.625 × V <sub>REF</sub> | -0.625 ×<br>V <sub>REF</sub> |     | 0.625 × V <sub>REF</sub> | V    |  |
|                                                                                        | Input range = 3 × V <sub>REF</sub>      | -0.1                         |     | 0.1                      |      |  |
|                                                                                        | Input range = 2.5 × V <sub>REF</sub>    | -0.1                         |     | 0.1                      |      |  |
|                                                                                        | Input range = 1.5 × V <sub>REF</sub>    | -0.1                         |     | 0.1                      |      |  |
|                                                                                        | Input range = 1.25 × V <sub>REF</sub>   | -0.1                         |     | 0.1                      |      |  |



| F                                  | Parameter                               | Test Conditions                                        | Min                          | Тур   | Max                      | Unit   |
|------------------------------------|-----------------------------------------|--------------------------------------------------------|------------------------------|-------|--------------------------|--------|
|                                    |                                         | Input range = ±3 × V <sub>REF</sub>                    | -3 × V <sub>REF</sub>        |       | 3 × V <sub>REF</sub>     |        |
|                                    |                                         | Input range = ±2.5 × V <sub>REF</sub>                  | −2.5 × V <sub>REF</sub>      |       | 2.5 × V <sub>REF</sub>   |        |
|                                    |                                         | Input range = ±1.5 × V <sub>REF</sub>                  | −1.5 × V <sub>REF</sub>      |       | 1.5 × V <sub>REF</sub>   |        |
| Fully Different $V_{IN} = AINxP$ - | ial Input Range <sup>(1)</sup><br>AINxN | Input range = ±1.25 × V <sub>REF</sub>                 | −1.25 × V <sub>REF</sub>     |       | 1.25 × V <sub>REF</sub>  | V      |
|                                    |                                         | Input range = ±0.75 × V <sub>REF</sub>                 | -0.75 × V <sub>REF</sub>     |       | 0.75 × V <sub>REF</sub>  |        |
|                                    |                                         | Input range = ±0.625 × V <sub>REF</sub>                | −0.625 ×<br>V <sub>REF</sub> |       | 0.625 × V <sub>REF</sub> |        |
|                                    |                                         | Input range = ±3 × V <sub>REF</sub>                    | -6.8                         |       | 6.5                      |        |
|                                    |                                         | Input range = ±2.5 × V <sub>REF</sub>                  | -6.8                         |       | 6.5                      |        |
| Fully Different                    | ial Input                               | Input range = ±1.5 × V <sub>REF</sub>                  | -3.4                         |       | 4.9                      |        |
| Common-Mod                         | le Input Range <sup>(1)</sup>           | Input range = ±1.25 × V <sub>REF</sub>                 | -3.4                         |       | 4.9                      | V      |
|                                    |                                         | Input range = $\pm 0.75 \times V_{REF}$                | -1.7                         |       | 4.1                      |        |
|                                    |                                         | Input range = ±0.625 × V <sub>REF</sub>                | -1.7                         |       | 4.1                      |        |
|                                    | Input Impedance                         | All input ranges, T <sub>A</sub> = 25°C                | 0.85                         | 1     | 1.17                     | Mohm   |
| Z <sub>IN</sub>                    | Input Impedance<br>Temperature Drift    | All input ranges                                       |                              | 7     |                          | ppm/°C |
|                                    |                                         | Input range = ±2.5 × V <sub>REF</sub>                  |                              | 8.8   |                          | Αų     |
|                                    | Input Leakage<br>Current                | Input range = ±1.25 × V <sub>REF</sub>                 |                              | 3.3   |                          |        |
| Analog Input<br>Current            |                                         | Input range = ±0.625 × V <sub>REF</sub>                |                              | 1.1   |                          |        |
| Ganone                             |                                         | Input range = 2.5 × V <sub>REF</sub>                   |                              | 9.2   |                          |        |
|                                    |                                         | Input range = 1.25 × V <sub>REF</sub>                  |                              | 4.3   |                          |        |
| Input Overvo                       | Itage Protection <sup>(1)</sup>         | 1                                                      | 1                            |       | T                        |        |
| Analog Input<br>Clamp              | Overvoltage<br>Protection Voltage       | All input ranges                                       | -30                          |       | 30                       | V      |
| Analog Input                       | Filter                                  | 1                                                      | TT                           |       | I                        |        |
| −3 dB BW                           | Analog Input LPF                        | Low bandwidth                                          |                              | 15    |                          | kHz    |
|                                    | Bandwidth −3 dB                         | High bandwidth                                         |                              | 35    |                          |        |
| -0.1 dB BW                         | Analog Input LPF                        | Low bandwidth                                          |                              | 2.5   |                          | kHz    |
| 0.1 00 000                         | Bandwidth −0.1 dB                       | High bandwidth                                         |                              | 5.5   |                          |        |
| System Perfo                       | ormance                                 | 1                                                      | 1                            |       |                          |        |
| Resolution                         | 1                                       |                                                        | 16                           |       |                          | Bits   |
| NMC                                | NO Missing Codes                        |                                                        | 16                           |       |                          | Bits   |
| DNL                                | Differential<br>Nonlinearity            | All input ranges                                       | -0.99                        | ±0.5  | 1                        | LSB    |
| INL                                | Integral Nonlinearity                   | All input ranges                                       | -2                           | ±1    | 2                        | LSB    |
| E.                                 | Positive Full-scale                     | At T <sub>A</sub> = 25°C,<br>all normal input ranges   |                              | ±0.02 | ±0.05                    | %FSR   |
| E <sub>G</sub>                     | Error                                   | At $T_A = 25^{\circ}C$ ,<br>all overrange input ranges |                              | ±0.02 | ±0.15                    | %FSR   |



| Parameter         |                                                                  | Test Conditions                                         | Min  | Тур    | Мах   | Unit   |  |
|-------------------|------------------------------------------------------------------|---------------------------------------------------------|------|--------|-------|--------|--|
|                   | Positive Full-scale<br>Error Matching <sup>(1)</sup>             | At $T_A = 25^{\circ}C$ ,<br>all normal input ranges     |      | ±0.02  | ±0.05 | %FSR   |  |
|                   | All Input Ranges<br>(channel-to-channel)                         | At T <sub>A</sub> = 25°C,<br>all overrange input ranges |      | ±0.02  | ±0.15 | %FSR   |  |
|                   | Positive Full-scale<br>Error Temperature<br>Drift <sup>(1)</sup> | All input ranges                                        | -5   | 1      | 5     | ppm/°C |  |
|                   |                                                                  | Input range = ±3 × V <sub>REF</sub>                     |      | ±0.375 | ±2.63 |        |  |
|                   |                                                                  | Input range = $\pm 2.5 \times V_{REF}$                  |      | ±0.32  | ±1.25 |        |  |
|                   |                                                                  | Input range = ±1.5 × V <sub>REF</sub>                   |      | ±0.56  | ±1.69 |        |  |
|                   |                                                                  | Input range = ±1.25 × V <sub>REF</sub>                  |      | ±0.47  | ±0.95 |        |  |
| _                 | Offset Error                                                     | Input range = ±0.75 × V <sub>REF</sub>                  |      | ±0.375 | ±1.41 |        |  |
| Eo                | At T <sub>A</sub> = 25°C,                                        | Input range = ±0.625 × V <sub>REF</sub>                 |      | ±0.32  | ±0.8  | mV     |  |
|                   |                                                                  | Input range = 3 × V <sub>REF</sub>                      |      | ±0.375 | ±4.59 |        |  |
|                   |                                                                  | Input range = 2.5 × V <sub>REF</sub>                    |      | ±0.32  | ±2.2  |        |  |
|                   |                                                                  | Input range = 1.5 × V <sub>REF</sub>                    |      | ±0.47  | ±4.69 |        |  |
|                   |                                                                  | Input range = 1.25 × V <sub>REF</sub>                   |      | ±0.39  | ±1.8  | 1      |  |
|                   | Offset Error Matching                                            | Input range = ±3 × V <sub>REF</sub>                     |      | ±0.375 | ±2.63 | _      |  |
|                   | (1)                                                              | Input range = ±2.5 × V <sub>REF</sub>                   |      | ±0.32  | ±1.25 |        |  |
|                   | (channel to channel<br>At T <sub>A</sub> = 25°C)                 | Input range = ±1.5 × V <sub>REF</sub>                   |      | ±0.56  | ±1.69 |        |  |
|                   |                                                                  | Input range = ±1.25 × V <sub>REF</sub>                  |      | ±0.47  | ±0.95 |        |  |
|                   |                                                                  | Input range = ±0.75 × V <sub>REF</sub>                  |      | ±0.375 | ±1.41 |        |  |
|                   |                                                                  | Input range = ±0.625 × V <sub>REF</sub>                 |      | ±0.32  | ±0.8  | mV     |  |
|                   |                                                                  | Input range = 3 × V <sub>REF</sub>                      |      | ±0.375 | ±4.59 |        |  |
|                   |                                                                  | Input range = 2.5 × V <sub>REF</sub>                    |      | ±0.32  | ±2.2  |        |  |
|                   |                                                                  | Input range = 1.5 × V <sub>REF</sub>                    |      | ±0.47  | ±4.69 |        |  |
|                   |                                                                  | Input range = 1.25 × V <sub>REF</sub>                   |      | ±0.39  | ±1.8  |        |  |
|                   | Offset Error<br>Temperature Drift <sup>(1)</sup>                 | All input ranges                                        | -4   | 1      | 4     | ppm/°C |  |
| Sampling          | Dynamics <sup>(1)</sup>                                          |                                                         |      |        | 1     |        |  |
| t <sub>CONV</sub> | Conversion Time                                                  |                                                         |      |        | 880   | ns     |  |
| t <sub>ACQ</sub>  | Acquisition Time                                                 |                                                         | 1120 |        |       | ns     |  |
| fs                | Maximum<br>Throughput Rate<br>without Latency                    |                                                         |      | 500    |       | kSPS   |  |
| Dynamic           | Characteristics                                                  |                                                         |      |        |       |        |  |
| SNR               | Low Bandwidth                                                    | Input range = $\pm 3 \times V_{REF}$                    | 87.2 | 90.5   |       |        |  |
|                   | –0.5 dBFS 1 kHz                                                  | Input range = ±2.5 × V <sub>REF</sub>                   | 86.9 | 89.9   |       | dB     |  |
|                   | Input                                                            | Input range = ±1.5 × V <sub>REF</sub>                   | 87   | 90     |       |        |  |



| Parameter |                 | Test Conditions                         | Min  | Тур  | Max | Unit     |
|-----------|-----------------|-----------------------------------------|------|------|-----|----------|
|           |                 | Input range = ±1.25 × V <sub>REF</sub>  | 86.5 | 89.4 |     |          |
|           |                 | Input range = ±0.75 × V <sub>REF</sub>  | 86.2 | 88.9 |     |          |
|           |                 | Input range = ±0.625 × V <sub>REF</sub> | 85.5 | 88.3 |     |          |
|           |                 | Input range = 3 × V <sub>REF</sub>      | 86.9 | 89.8 |     |          |
|           |                 | Input range = 2.5 × V <sub>REF</sub>    | 86.3 | 89   |     |          |
|           |                 | Input range = 1.5 × V <sub>REF</sub>    | 85.6 | 88.2 |     |          |
|           |                 | Input range = 1.25 × V <sub>REF</sub>   | 84.8 | 87.1 |     |          |
|           | High Bandwidth  | Input range = ±3 × V <sub>REF</sub>     |      | 90   |     |          |
|           | –0.5 dBFS 1 kHz | Input range = ±2.5 × V <sub>REF</sub>   |      | 90   |     |          |
|           | Input           | Input range = ±1.5 × V <sub>REF</sub>   |      | 90   |     |          |
|           |                 | Input range = ±1.25 × V <sub>REF</sub>  |      | 89   |     |          |
|           |                 | Input range = ±0.75 × V <sub>REF</sub>  |      | 89   |     |          |
|           |                 | Input range = ±0.625 × V <sub>REF</sub> |      | 88   |     | dB       |
|           |                 | Input range = 3 × V <sub>REF</sub>      |      | 88   |     | -        |
|           |                 | Input range = 2.5 × V <sub>REF</sub>    |      | 88   |     |          |
|           |                 | Input range = 1.5 × V <sub>REF</sub>    |      | 86   |     |          |
|           |                 | Input range = 1.25 × V <sub>REF</sub>   |      | 85   |     |          |
| THD       | Low Bandwidth   | Input range = ±3 × V <sub>REF</sub>     |      | -103 |     |          |
|           | –0.5 dBFS 1 kHz | Input range = ±2.5 × V <sub>REF</sub>   |      | -103 |     |          |
|           | Input           | Input range = ±1.5 × V <sub>REF</sub>   |      | -103 |     |          |
|           |                 | Input range = ±1.25 × V <sub>REF</sub>  |      | -103 |     |          |
|           |                 | Input range = ±0.75 × V <sub>REF</sub>  |      | -103 |     |          |
|           |                 | Input range = ±0.625 × V <sub>REF</sub> |      | -103 |     | dB       |
|           |                 | Input range = 3 × V <sub>REF</sub>      |      | -103 |     |          |
|           |                 | Input range = 2.5 × V <sub>REF</sub>    |      | -103 |     |          |
|           |                 | Input range = 1.5 × V <sub>REF</sub>    |      | -103 |     |          |
|           |                 | Input range = 1.25 × V <sub>REF</sub>   |      | -103 |     |          |
|           | High Bandwidth  | Input range = ±3 × V <sub>REF</sub>     |      | -100 |     |          |
|           | –0.5 dBFS 1 kHz | Input range = ±2.5 × V <sub>REF</sub>   |      | -100 |     |          |
|           | Input           | Input range = ±1.5 × V <sub>REF</sub>   |      | -100 |     |          |
|           |                 | Input range = ±1.25 × V <sub>REF</sub>  |      | -100 |     |          |
|           |                 | Input range = ±0.75 × V <sub>REF</sub>  |      | -100 |     | <b>–</b> |
|           |                 | Input range = ±0.625 × V <sub>REF</sub> |      | -100 |     | dB       |
|           |                 | Input range = 3 × V <sub>REF</sub>      |      | -100 |     | 1        |
|           |                 | Input range = 2.5 × V <sub>REF</sub>    |      | -100 |     | 1        |
|           |                 | Input range = 1.5 × V <sub>REF</sub>    |      | -100 |     | -        |
|           |                 | Input range = 1.25 × V <sub>REF</sub>   |      | -100 |     | 1        |



| Parameter               |                                        | Test Conditions                                                       | Min   | Тур  | Max              | Unit   |
|-------------------------|----------------------------------------|-----------------------------------------------------------------------|-------|------|------------------|--------|
| SINAD                   | Low Bandwidth                          | Input range = ±3 × V <sub>REF</sub>                                   | 86.6  | 90   |                  |        |
|                         | –0.5 dBFS 1 kHz                        | Input range = ±2.5 × V <sub>REF</sub>                                 | 86.7  | 89.7 |                  |        |
|                         | Input                                  | Input range = ±1.5 × V <sub>REF</sub>                                 | 86.6  | 89.8 |                  |        |
|                         |                                        | Input range = ±1.25 × V <sub>REF</sub>                                | 86.3  | 89.2 |                  |        |
|                         |                                        | Input range = ±0.75 × V <sub>REF</sub>                                | 85.5  | 88.8 |                  |        |
|                         |                                        | Input range = ±0.625 × V <sub>REF</sub>                               | 84.6  | 88.2 |                  | - dB   |
|                         |                                        | Input range = 3 × V <sub>REF</sub>                                    | 86.3  | 89.6 |                  |        |
|                         |                                        | Input range = 2.5 × V <sub>REF</sub>                                  | 85.7  | 88.8 |                  |        |
|                         |                                        | Input range = 1.5 × V <sub>REF</sub>                                  | 85.2  | 88.1 |                  |        |
|                         |                                        | Input range = 1.25 × V <sub>REF</sub>                                 | 84.4  | 87   |                  |        |
|                         | High Bandwidth                         | Input range = ±3 × V <sub>REF</sub>                                   |       | 89   |                  |        |
|                         | –0.5 dBFS 1 kHz                        | Input range = ±2.5 × V <sub>REF</sub>                                 |       | 89   |                  |        |
|                         | Input                                  | Input range = ±1.5 × V <sub>REF</sub>                                 |       | 89   |                  |        |
|                         |                                        | Input range = ±1.25 × V <sub>REF</sub>                                |       | 89   |                  | -      |
|                         |                                        | Input range = ±0.75 × V <sub>REF</sub>                                |       | 88   |                  |        |
|                         |                                        | Input range = $\pm 0.625 \times V_{REF}$                              |       | 88   |                  | dB<br> |
|                         |                                        | Input range = 3 × V <sub>REF</sub>                                    |       | 89   |                  |        |
|                         |                                        | Input range = 2.5 × V <sub>REF</sub>                                  |       | 89   |                  |        |
|                         |                                        | Input range = 1.5 × V <sub>REF</sub>                                  |       | 87   |                  |        |
|                         |                                        | Input range = 1.25 × V <sub>REF</sub>                                 |       | 86   |                  |        |
| Crosstalk Isol          | ation                                  | Interfere channel input<br>overdriven to 2 x maximum<br>input voltage |       | 120  |                  | dB     |
| Crosstalk Mer           | nory                                   | Interfere channel input<br>overdriven to 2 x maximum<br>input voltage |       | 90   |                  | dB     |
| Auxiliary Cha           | annel                                  |                                                                       |       |      |                  |        |
| Resolution              |                                        |                                                                       | 16    |      |                  | Bits   |
| Vaux_in                 | AUX_IN Voltage<br>Range <sup>(1)</sup> | (AUX_IN – AUX_GND)                                                    | 0     |      | V <sub>REF</sub> | v      |
|                         | Operating Input                        | AUX_IN                                                                | 0     |      | V <sub>REF</sub> | V      |
|                         | Range <sup>(1)</sup>                   | AUX_GND                                                               |       | 0    |                  | V      |
| •                       |                                        | During sampling                                                       |       | 35   |                  | pF     |
| Cin                     | Input Capacitance                      | During conversion                                                     |       | 5    |                  | pF     |
| Analog input<br>current | Input Leakage<br>Current               |                                                                       |       | 100  |                  | nA     |
| DNL                     | Differential                           |                                                                       | -0.99 | ±0.5 | 1                | LSB    |
| INL                     | Integral Nonlinearity                  | All input ranges                                                      | -2.2  | ±1   | 2.2              | LSB    |



|                                 | Parameter                                     | Test Conditions                                                         | Min   | Тур   | Max    | Unit   |
|---------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|-------|-------|--------|--------|
| E <sub>G(AUX)</sub>             | Gain Error                                    | At T <sub>A</sub> = 25°C                                                |       | ±0.01 | ±0.018 | %FSR   |
| E <sub>O(AUX)</sub>             | Offset Error                                  | At T <sub>A</sub> = 25°C                                                |       | ±0.5  | ±1.05  | mV     |
| SNR                             | Signal-to-noise Ratio                         | V <sub>AUX_IN</sub> = –0.5 dBFS at 1 kHz                                | 85.4  | 89    |        | dB     |
| THD                             | Total Harmonic<br>Distortion                  | V <sub>AUX_IN</sub> = -0.5 dBFS at 1 kHz                                |       | -104  |        | dB     |
| SINAD                           | Signal-to-noise<br>Distortion Ratio           | V <sub>AUX_IN</sub> = –0.5 dBFS at 1 kHz                                | 85    | 88.8  |        | dB     |
| SFDR                            | Spurious-free<br>Dynamic Range                | V <sub>AUX_IN</sub> = –0.5 dBFS at 1 kHz                                |       | 104   |        | dB     |
| Internal Refe                   | erence Output                                 |                                                                         |       |       |        |        |
| Vrefio_int                      | REFIO Voltage                                 | Voltage on REFIO pin<br>(configured as output)<br>T <sub>A</sub> = 25°C | 4.086 | 4.096 | 4.106  | v      |
|                                 | Reference<br>Temperature Drift <sup>(1)</sup> |                                                                         |       | 5     | 10     | ppm/°C |
| $C_{\text{OUT}_{\text{REFIO}}}$ | Decoupling<br>Capacitor on REFIO              |                                                                         |       | 0.1   |        | μF     |
| VREFCAP                         | Reference Voltage                             | Reference voltage to ADC<br>(on REFCAP pin)<br>T <sub>A</sub> = 25°C    | 4.086 | 4.096 | 4.106  | v      |
|                                 | Reference Buffer<br>Output Impedance          |                                                                         |       | 0.5   |        | Ω      |
|                                 | Reference Buffer<br>Temperature Drift         |                                                                         |       | 1     |        | ppm/°C |
| Cout_refcap                     | Decoupling<br>Capacitor on REFIO              |                                                                         |       | 10    |        | μF     |
| t <sub>ON</sub>                 | Reference Turn-on<br>Time                     | $C_{OUT\_REFIO} = 0.1 \mu F$<br>$C_{OUT\_REFCAP} = 10 \mu F$            |       | 10    |        | ms     |
| External Ref                    | erence Input                                  |                                                                         |       |       |        |        |
| V <sub>REFIO_EXT</sub>          | External Reference                            | External reference voltage<br>on REFIO<br>(configured as input)         | 4.046 | 4.096 | 4.146  | v      |
| Power-Supp                      | ly Requirements                               |                                                                         |       |       |        |        |
| AVDD <sup>(1)</sup>             | Analog Power-supply<br>Voltage                | Analog supply                                                           | 4.75  | 5     | 5.25   | V      |
|                                 | Digital Power supply                          | Digital supply range                                                    | 1.65  | 3.3   | AVDD   | V      |
| DVDD <sup>(1)</sup>             | Digital Power-supply<br>Voltage               | Digital supply range for specified performance                          | 2.7   | 3.3   | 5.25   | V      |
| I <sub>AVDD_DYN</sub>           | AVDD Dynamic                                  | AVDD = 5 V, f <sub>S</sub> = maximum<br>and internal reference          |       | 25    | 30     | mA     |



| Parameter                      |                                   | Test Conditions                                                  | Min        | Тур | Мах        | Unit |
|--------------------------------|-----------------------------------|------------------------------------------------------------------|------------|-----|------------|------|
| I <sub>AVDD_STC</sub>          | AVDD Static                       | Device not converting and internal reference                     |            | 23  | 28         | mA   |
| ISTDBY                         | Standby                           | At AVDD = 5 V, device in<br>STDBY mode and internal<br>reference |            | 8.3 | 10         | mA   |
| IPWR_DN                        | Power-down                        | At AVDD = 5 V, device in<br>PWR_DN                               |            | 12  |            | μA   |
| I <sub>DVDD_DYN</sub>          | Digital Supply<br>Current         | At DVDD = 3.3 V, output = 0000                                   |            | 0.5 |            | mA   |
| Digital Inputs                 | s (CMOS)                          |                                                                  |            |     |            |      |
| VIH                            | Digital Input Logic               | DVDD > 2.1 V                                                     | 0.7 x DVDD |     | DVDD + 0.3 | V    |
| VIL                            | Levels                            |                                                                  | -0.3       |     | 0.3 x DVDD | V    |
| VIH                            | Digital Input Logic               |                                                                  | 0.8 x DVDD |     | DVDD + 0.3 | V    |
| VIL                            | Levels                            | DVDD ≤ 2.1 V                                                     | -0.3       |     | 0.2 x DVDD | V    |
| Input Leakage                  | e Current                         |                                                                  |            | 100 |            | nA   |
| Input Capacit                  | ance                              |                                                                  |            | 5   |            | pF   |
| Digital Outpu                  | uts (CMOS)                        |                                                                  |            |     |            |      |
| V <sub>OH</sub>                | Digital Output Logic              | I <sub>0</sub> = 500-μA source                                   | 0.8 x DVDD |     | DVDD       | V    |
| V <sub>OL</sub>                | Levels                            | I <sub>0</sub> = 500-μA sink                                     | 0          |     | 0.2 x DVDD | V    |
| Floating State Leakage Current |                                   | Only for SDO                                                     |            | 1   |            | μA   |
| Internal Pin Capacitance       |                                   |                                                                  |            | 5   |            | pF   |
| Temperature                    | Range <sup>(1)</sup>              |                                                                  |            |     | ·          |      |
| T <sub>A</sub>                 | Operating Free-air<br>Temperature |                                                                  | -40        |     | 125        | °C   |

(1) These specifications are not production tested but are supported by characterization data at the initial product release.



### Timing Requirements <sup>(1)</sup>

#### **Universal Serial Timing Specifications**

AVDD = 5 V, DVDD = 5 V,  $V_{REF}$  = 4.096 V internal reference,  $f_{SAMPLE}$  = 500 kSPS,  $T_A$  = -40°C to +125°C, interface timing tested using a load capacitance of 20 pF, unless otherwise noted.

|                       | Parameter                                                      | Min  | Ту | Max | Unit              |
|-----------------------|----------------------------------------------------------------|------|----|-----|-------------------|
| Timing Spe            | cifications                                                    |      |    |     |                   |
| fs                    | Sampling frequency (f <sub>CLK</sub> = max)                    |      |    | 500 | kSPS              |
| ts                    | ADC cycle time period (f <sub>CLK</sub> = max)                 | 2    |    |     | μs                |
| f <sub>SCLK</sub>     | Serial clock frequency ( $f_s$ = max) DVDD ≥ 3V                |      |    | 17  | MHz               |
| t <sub>SCLK</sub>     | Serial clock time period ( $f_s$ = max) DVDD ≥ 3V              | 59   |    |     | ns                |
| t <sub>CONV</sub>     | Conversion time                                                |      |    | 880 | ns                |
| t <sub>DZ_CSDO</sub>  | Delay time: $\overline{CS}$ falling to data enable             |      |    | 10  | ns                |
| t <sub>D_CKCS</sub>   | Delay time: last SCLK falling to $\overline{\text{CS}}$ rising | 10   |    |     | ns                |
| t <sub>DZ_CSDO</sub>  | Delay time: $\overline{CS}$ rising to SDO going to 3-state     | 10   |    |     | ns                |
| Timing Rec            | uirements                                                      |      |    |     | 1                 |
| t <sub>ACQ</sub>      | Acquisition time                                               | 1120 |    |     | ns                |
| t <sub>PH_CK</sub>    | Clock high time                                                | 0.4  |    | 0.6 | t <sub>SCLK</sub> |
| t <sub>PL_CK</sub>    | Clock low time                                                 | 0.4  |    | 0.6 | t <sub>SCLK</sub> |
| t <sub>PH_CS</sub>    | CS high time                                                   | 30   |    |     | ns                |
| tsu_cscк              | Setup time: $\overline{CS}$ falling to SCLK falling            | 15   |    |     | ns                |
| t <sub>нт_скоо</sub>  | Hold time: SCLK falling to (previous) data valid on SDO        | 5    |    |     | ns                |
| tsu_docк              | Setup time: SDO data valid to SCLK falling                     | 25   |    |     | ns                |
| tsu_DICK              | Setup time: SDI data valid to SCLK falling                     | 5    |    |     | ns                |
| t <sub>нт_ско</sub>   | Hold time: SCLK falling to (previous) data valid on SDI        | 5    |    |     | ns                |
| t <sub>SU_DSYCK</sub> | Setup time: DAISY data valid to SCLK falling                   | 5    |    |     | ns                |
| tht_ckdsy             | Hold time: SCLK falling to (previous) data valid on DAISY      | 5    |    |     | ns                |

#### **Table 2. Serial Interface Timing Specifications**

(1) Parameters are provided by the design simulation.





Figure 1. Universal Timing Diagram Across All Interfaces



### **Typical Performance Characteristics**

All test conditions:  $T_A = 25^{\circ}C$ , AVDD = 5 V, DVDD = 5 V, internal reference  $V_{REF} = 4.096$  V, and  $f_{SAMPLE} = 500$  kSPS, unless otherwise noted.











# **TPAFE51736S8**











# **Detailed Description**

### Overview

The TPAFE51736S8 is a 16-bit data acquisition system with 8 analog input channels. Each input channel includes input protection circuitry, a programmable gain amplifier (PGA), an analog low-pass filter, and an analog-to-digital converter (ADC) driver. These channels feed into an 8-channel analog multiplexer (MUX) with an ADC operating at a 500 KSPS throughput rate. The device incorporates a 4.096-V internal reference with a fast-settling buffer and a flexible channel sequencer. It also provides high-speed serial interfaces for communication with the daisy-chain function, making it suitable for a wide range of data acquisition applications.

The device operates with a single 5-V analog supply and can process true bipolar input signals. It provides a programmable analog signal range, including options for true bipolar single-ended  $\pm 12.288$  V,  $\pm 10.24$  V,  $\pm 6.144$  V,  $\pm 5.12$  V,  $\pm 3.072$  V,  $\pm 2.56$  V, unipolar single-ended 0 V - 12.288 V, 0 V - 10.24 V, 0 V - 6.144 V, 0 V - 5.12 V, and true bipolar fully-differential  $\pm 12.288$  V,  $\pm 10.24$  V,  $\pm 6.144$  V,  $\pm 5.12$  V input signals. The input clamp protection circuitry can protect the device from being damaged by voltages as high as  $\pm 30$  V. The device features a constant 1-M $\Omega$  resistive input impedance.



### **Functional Block Diagram**





### **Feature Description**

#### Analog Inputs

The TPAFE51736 incorporates a 16-bit successive approximation register (SAR) analog-to-digital converter (ADC). The ADC is linked up to 8 analog input channels through a multiplexer. The device comprises a total of eight analog input pairs. The ADC is responsible for converting the voltage difference between the analog input pairs AINxP – AINxN. The simplified circuit schematic for each analog input channel is shown in the function block diagram, encompassing the input clamp protection circuit, PGA, low-pass filter, multiplexer, high-speed ADC driver, and a precision 16-bit SAR ADC.

#### Analog Input Ranges

The TPAFE51736 can handle true bipolar differential, bipolar single-ended, and unipolar single-ended input voltages. It is possible to configure an individual analog input range per channel from the range select registers.

The devices sample the voltage difference (AIN\_xP – AIN\_xN) between the selected analog input pairs. They allow a  $\pm 0.1$  V range on the AIN\_nGND pin for all analog input channels. This feature is beneficial in modular systems where the sensor or signal-conditioning block is located at a distance from the ADC on the board. It proves particularly useful when there might be a difference in the ground potential between the sensor or signal conditioner and the ADC ground. In such cases, it is recommended to run separate wires from the AIN\_xN pin of the device to the sensor or signal-conditioning ground.

In single-ended mode, the AINxN pins are typically connected to analog ground and allow a ±0.1 V range referred to ground.

In differential mode, the AINxP and AINxN typically sense the fully differential input signals within a certain input common mode range. Also, this feature is beneficial in modular systems where the sensor or signal-conditioning block is located at a distance from the ADC on the board. It proves particularly useful when there might be a difference in the ground potential between the sensor or signal conditioner and the ADC ground. In such cases, it is recommended to run separate wires from the AIN\_xN pin of the device to the sensor or signal-conditioning ground.

#### Analog Input Impedance

The TPAFE51736 features a fixed high analog input impedance of 1 M $\Omega$ , which is nearly constant at different sampling frequencies. It eliminates the need for an external driver amplifier, allowing direct connection to the source or sensor.

#### Analog Input Clamp Protection

The TPAFE51736 incorporates an internal clamp protection circuit on each of the analog input channels. This protection circuit allows each analog input voltage to swing up to  $\pm 30$  V. Beyond this threshold, the input clamp circuit activates while still operating from a single 5 V supply.

To ensure that the input current stays within safe limits ( $\pm$ 10 mA) for input voltages above the clamp threshold, it is advisable to use a series resistor with the analog inputs. This resistor can serve the dual purpose of limiting input current and providing an antialiasing low-pass filter (LPF) when combined with a capacitor. Matching the external source impedance on the AINxP and AINxN pins helps cancel any additional offset error. However, it's advisable to avoid prolonged activation of the clamp protection circuitry during normal or power-down conditions for optimal device performance.

#### Programmable Gain Amplifier (PGA)

The TPAFE51736 includes a PGA at each analog input channel, providing support for both unipolar/bipolar single-ended and bipolar differential inputs. The supported analog input ranges are listed below. Each channel's analog input range can be configured independently using the range select register fields located at addresses 0x5 to 0xC and 0xD for range expanding.



| A mala a langut Mada | Amelan kanat Damas           |                | RANGE_CHn[3:0] |       |       |
|----------------------|------------------------------|----------------|----------------|-------|-------|
| Analog Input Mode    | Analog Input Range           | CHn_OVER_RANGE | BIT 2          | BIT 1 | BIT 0 |
| Single-ended         | ±3 x V <sub>REF</sub>        | 1              | 0              | 0     | 0     |
| Single-ended         | ±2.5 x V <sub>REF</sub>      | 0              | 0              | 0     | 0     |
| Single-ended         | ±1.5 x V <sub>REF</sub>      | 1              | 0              | 0     | 1     |
| Single-ended         | ±1.25 x V <sub>REF</sub>     | 0              | 0              | 0     | 1     |
| Single-ended         | ±0.75 x V <sub>REF</sub>     | 1              | 0              | 1     | 0     |
| Single-ended         | ±0.625 x V <sub>REF</sub>    | 0              | 0              | 1     | 0     |
| Differential         | ±3 x V <sub>REF</sub>        | 1              | 0              | 1     | 1     |
| Differential         | ±2.5 x V <sub>REF</sub>      | 0              | 0              | 1     | 1     |
| Differential         | ±1.5 x V <sub>REF</sub>      | 1              | 1              | 0     | 0     |
| Differential         | ±1.25 x V <sub>REF</sub>     | 0              | 1              | 0     | 0     |
| Differential         | ±0.75 x V <sub>REF</sub>     | 1              | 1              | 1     | 1     |
| Differential         | ±0.625 x V <sub>REF</sub>    | 0              | 1              | 1     | 1     |
| Single-ended         | 0 to 3 x V <sub>REF</sub>    | 1              | 1              | 0     | 1     |
| Single-ended         | 0 to 2.5 x V <sub>REF</sub>  | 0              | 1              | 0     | 1     |
| Single-ended         | 0 to 1.5 x V <sub>REF</sub>  | 1              | 1              | 1     | 0     |
| Single-ended         | 0 to 1.25 x V <sub>REF</sub> | 0              | 1              | 1     | 0     |

#### Table 3. Analog Input Ranges

#### Low-Pass Filter (LPF)

Every analog input channel on the TPAFE51736 is equipped with an antialiasing low-pass filter (LPF) situated at the PGA output. The following table outlines the programmable LPF options associated with the analog input range in the device. The analog input bandwidth for all eight channels can be chosen using the LPF\_CONFIG[1:0] bits found in address 0xE.

#### Table 4. Low-Pass Filter Corner Frequency

| LPF            | LPF Analog Input Range |        |
|----------------|------------------------|--------|
| Low-bandwidth  | All input ranges       | 15 kHz |
| High-bandwidth | All input ranges       | 35 kHz |

#### Multiplexer (MUX)

The TPAFE51736 includes an integrated multi-channel analog multiplexer. Each analog input channel is processed of the voltage difference between the positive analog input AIN\_xP and the negative ground input AIN\_xN through the analog front-end circuitry before entering the multiplexer. The ADC directly samples the output of the multiplexer. The multiplexer can scan these analog inputs in either manual or auto-scan mode, as detailed in the Channel Sequencing Modes section. In manual mode (MAN\_Ch\_n), the channel is selected for every sample through a register write. In auto-scan mode (AUTO\_RST), the channel number increments automatically on every  $\overline{CS}$  falling edge after the current channel is sampled. The analog inputs can be chosen for an auto-scan with register settings (refer to the Auto-Scan Sequencing Control Registers section). The devices automatically scan only the selected analog inputs in ascending order.



#### Reference

The TPAFE51736 can operate with either an internal voltage reference or an external voltage reference, utilizing the internal buffer. The configuration between internal and external reference is controlled by an external REFSEL pin. The devices incorporate a built-in buffer amplifier designed to drive the reference input of the internal ADC core, optimizing overall performance.

#### **Internal Reference**

The TPAFE51736 includes an on-chip 4.096 V reference which can be accessed through the REFIO pin. The SAR ADC utilizes this internally generated and buffered 4.096 V reference for its conversions. To select the internal reference, connect the REFSEL pin to AGND or tie it low. In this configuration, the REFIO pin serves as an output pin, providing the internal reference value. It is recommended to place a 0.1  $\mu$ F decoupling capacitor between the REFIO pin and REFGND, and a larger capacitor requires longer settling time. Place the capacitor as close to the REFIO pin as possible. The capacitors act as decoupling components and form a low-pass filter with the output impedance of the internal band-gap circuit, limiting the noise of the reference. Avoid using the REFIO pin to drive external loads, as REFIO has limited current output capability. If needed as a source, it can be followed by an operational amplifier buffer.



Figure 28. Device Connections for Using an Internal 4.096-V Reference

#### External Reference

Alternatively, the TPAFE51736 can accept an external reference voltage applied to the REFIO pin. When an external 4.096 V reference is provided, the device internally amplifies it to create the 4.096 V buffered reference used by the SAR ADC. To select external reference mode, either tie the REFSEL pin high or connect it to the DVDD supply. In this mode, an external 4.096-V reference should be applied at REFIO, which becomes an input pin. Users can use any external reference in this mode. The internal buffer is designed to handle dynamic loading on the REFCAP pin, which is internally connected to the ADC reference input. When using an external reference, it's important to appropriately filter the reference output to minimize its impact on system performance.

The output of the internal reference buffer is present at the REFCAP pin. To ensure proper operation, decoupling capacitors of 22  $\mu$ F and 1  $\mu$ F must be connected between REFCAP and REFGND. It's important not to use the internal buffer to drive any external loads due to the limited current output capability of this buffer.







#### Auxiliary Channel

The TPAFE51736 incorporates a single-ended auxiliary input channel (AUX\_IN and AUX\_GND). The AUX channel facilitates a direct interface with an internal, high-precision, 16-bit ADC through the multiplexer, excluding the front-end analog signal conditioning found in other analog input channels. The AUX channel supports a unipolar input range of 0 V to  $V_{REF}$ , as no front-end PGA on the auxiliary channel. The AUX\_IN pin can accept input signals ranging from 0 V to  $V_{REF}$ , while the AUX GND pin should be connected to GND.

During a conversion, the voltage between these pins is directly sampled on an internal sampling capacitor. The input current required to charge the sampling capacitor depends on factors such as the sampling rate, input frequency, and source impedance. For slow applications with a low-impedance source, the inputs of the AUX channel can be directly driven. However, as the throughput, input frequency, or source impedance increases, a driving amplifier is recommended at the input to achieve optimal AC performance from the AUX channel.

#### ADC Transfer Function

The TPAFE51736 outputs 16 bits of conversion data in straight binary format for all ranges and all modes (unipolar/bipolar). The full-scale range (FSR) for each input signal is determined by the difference between the positive full-scale (PFS) input voltage and the negative full-scale (NFS) input voltage. The size of the least significant bit (LSB) is calculated as FSR /  $2^{16}$  = FSR / 65536 for the 16-bit resolution of the ADC. In the case of a reference voltage (V<sub>REF</sub>) set to 4.096 V, the LSB values for various input ranges are as follows:





Figure 30. 16-Bit ADC Transfer Function (Straight-Binary Format)

| Input Range                         | NFS (V) | PFS (V) | FSR (V) | LSB (µV) |
|-------------------------------------|---------|---------|---------|----------|
| ±3 x V <sub>REF</sub>               | -12.288 | 12.288  | 24.576  | 375      |
| ±2.5 x V <sub>REF</sub>             | -10.24  | 10.24   | 20.48   | 312.5    |
| ±1.5 x V <sub>REF</sub>             | -6.144  | 6.144   | 12.288  | 187.5    |
| ±1.25 x V <sub>REF</sub>            | -5.12   | 5.12    | 10.24   | 156.25   |
| $\pm 0.75 \text{ x V}_{\text{REF}}$ | -3.072  | 3.072   | 6.144   | 93.75    |
| ±0.625 x V <sub>REF</sub>           | -2.56   | 2.56    | 5.12    | 78.125   |
| 0 to 3 x V <sub>REF</sub>           | 0       | 12.288  | 12.288  | 187.5    |
| 0 to 2.5 x $V_{\text{REF}}$         | 0       | 10.24   | 10.24   | 156.25   |
| 0 to 1.5 x V <sub>REF</sub>         | 0       | 6.144   | 6.144   | 93.75    |
| 0 to 1.25 x $V_{\text{REF}}$        | 0       | 5.12    | 5.12    | 78.125   |

Table 5. Transfer Characteristics

#### Alarm Feature

The TPAFE51736 features an active-high ALARM output. The ALARM signal is synchronous with a state change on the 16th falling edge of the SCLK signal. A high level on ALARM indicates that the alarm flag has been triggered on one or more channels of the device. This pin can be connected to interrupt the host input. Upon receiving an ALARM interrupt, the alarm flag registers are examined to identify which channels have an alarm condition. Each channel on the devices supports two independently programmable alarms – a low alarm and a high alarm – with separate hysteresis settings for each alarm threshold. If the alarm feature is disabled, the ALARM pin can be left floating.



The TPAFE51736 features programmable high/low alarm thresholds with hysteresis (H) for robust out-of-range detection: a high alarm triggers when the digital output exceeds the upper limit (T+H) and resets only when the value falls to or below (T-H-2), while a low alarm activates below the lower limit (T-H-1) and clears upon reaching (T+H+1), with the asymmetric reset thresholds ( $\pm$ 1 LSB offset) preventing noise-induced false triggers. These alarms support interrupt-driven monitoring for critical applications like overvoltage protection, with thresholds configurable via SPI.



Figure 31. High-ALARM and Low-ALARM Hysteresis



## **TPAFE51736S8**

### 16-bit, 500-kSPS, 8-channel, Bipolar Input ADC

### **Device Functional Modes**

Digital Interface Digital Interface Pins



#### • CS (input)

The  $\overline{CS}$  signal serves as an active-low, chip-select signal. It also functions as a control signal to initiate a conversion on the falling edge. Each data frame starts with the falling edge of the  $\overline{CS}$  signal. In the previous frame, the analog input channel slated for conversion is configured. As the  $\overline{CS}$  signal falls, the devices sample the input signal from the designated channel, and a conversion is triggered using the internal clock. Throughout this conversion process, the settings for the subsequent data frame can be input. When the  $\overline{CS}$  signal is in a high state, the ADC is in an idle state.

• SCLK (input)

This pin serves as the external clock input for the data interface. All synchronous interactions with the device are synchronized to the falling edges of the SCLK signal.

SDI (input)

SDI (Serial Data Input) is the input line for serial data. It is employed by the host processor to set the internal device registers for configuring the device. During the beginning of each data frame, the  $\overline{CS}$  (Chip Select) signal becomes low, and the data on the SDI line is read by the device at each falling edge of the SCLK (Serial Clock) signal for the ensuing 16 SCLK cycles. Any modifications made to the device configuration in a specific data frame take effect on the device upon the subsequent falling edge of the  $\overline{CS}$  signal.

• SDO (output)

SDO (Serial Data Output) is the output line for serial data. The device utilizes SDO to transmit conversion data. The size of the data output frame varies depending on the register setting for the SDO format. When  $\overline{CS}$  (Chip Select) is at a low level, it releases the SDO pin from the Hi-Z (High Impedance) state. SDO stays low for the first 15 falling edges of SCLK (Serial Clock). The Most Significant Bit (MSB) of the output data stream is clocked out on SDO during the 16th falling edge of SCLK, followed by the subsequent data bits on each falling edge thereafter. The SDO line returns to a low state after the complete data frame is output and goes back to a Hi-Z state when  $\overline{CS}$  goes high.

• DAISY (Input)

The DAISY pin serves as a serial input in daisy-chain mode. In scenarios where multiple devices are connected in a daisy-chain configuration, the DAISY pin of the initial device in the chain is linked to GND. Subsequently, the DAISY pin of each successive device is connected to the SDO (Serial Data Output) pin of the preceding device. The SDO output of the last device in the chain is then connected to the SDI (Serial Data Input) of the host processor. In stand-alone device applications, the DAISY pin is simply connected to GND.



#### RST /PD (input)

RST /PD is a dual-function pin. It can be utilized to put the device into power-down mode or to reset the program registers to their default values.

To enter power-down mode, this pin should be pulled low for at least 600 ns. This action is asynchronous to the clock, allowing it to be triggered at any time. In power-down mode, the device ignores any activity on the digital input pins, except for the  $\overline{RST}$  /PD pin.

To perform a reset (RST) of the program registers, the  $\overline{RST}/\overline{PD}$  pin needs to be pulled low for no more than 200 ns. Similar to the power-down mode, this action is asynchronous to the clock. Once the pin is pulled back to a logic high state, the devices enter normal mode with the program registers reset to their default values.

Upon returning to a logic high level, the devices wake up in a default state, and to configure the device, a valid write operation on the program register is necessary, followed by an appropriate command (AUTO\_RST or MAN) to initiate conversions.



#### Figure 32. RST/PD Pin Timing

#### Table 6. RST/PD Pin Functionality

| Ccondition                                                                                        | Device Mode                                                                                            |  |  |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| 120 ns < $t_{PL_{RST_{PD}}} \le 200$ ns The device is in RST mode and does not enter PWR_DN mode. |                                                                                                        |  |  |
| 200 ns < t <sub>PL_RST_PD</sub> < 600 ns                                                          | The device is in RST mode and may or may not enter PWR_DN mode. NOTE: This setting is not recommended. |  |  |
| t <sub>PL_RST_PD</sub> ≥ 600 ns                                                                   | The device enters PWR_DN mode and the program registers are reset to the default value.                |  |  |

#### Data Acquisition Example

An example of how a host processor can utilize the device interface to set up the internal registers, perform configuration, and acquire data for sampling a specific input channel is shown below:



#### Figure 33. Device Operation Using the Serial Interface Timing Diagram



- Phase A: During the data conversion frame initiation, triggered by a falling edge of the CS signal, the host instructs the device to sample the analog input signal. This sampled signal is then converted by the ADC using an internal oscillator clock. The specific analog input channel for conversion in this frame is determined by the selection made in the previous data frame. Simultaneously, the host can configure the device for the next conversion by providing input through the SDI and SCLK inputs. The data on the SDI line is latched into the device at each falling edge of the SCLK signal for the next 16 SCLK cycles. Throughout these initial cycles, the SDO line remains low as the device doesn't output internal conversion data during this period.
- Phase B: Within the initial 16 SCLK cycles, the internal conversion process is completed, and the data within the converter is now available. However, the device withholds the output of data bits on the SDO line until the 16th falling edge is detected on the SCLK input. It is crucial that the 16th SCLK falling edge occurs after the internal conversion is finished to ensure accurate data output from the device. Consequently, the SCLK frequency is limited to a maximum value, as specified in the timing specifications to maintain proper functioning.
- Phase C: At the 16th falling edge of the SCLK signal, the device retrieves the LSB of the input word from the SDI line. No further readings are taken from the SDI line for the remainder of the data frame. Simultaneously, on the same edge, the MSB of the conversion data is transmitted on the SDO line, ready to be read by the host processor during the subsequent falling edge of the SCLK signal. For a 16-bit output data sequence, the LSB can be accessed on the 32nd SCLK falling edge. The SDO maintains a 0 output on subsequent SCLK falling edges until the initiation of the next conversion.
- **Phase D:** After receiving the internal data from the device, the host ends the data frame by setting the  $\overline{CS}$  signal to a high state. Subsequently, the SDO output enters a high-impedance (Hi-Z) state until the start of the next data frame.

#### Host-to-Device Connection Topologies

The TPAFE51736 features a highly configurable digital interface, enabling flexible communication with host controllers via SPI. The figure below shows a standard single-device connection, systems often require multi-ADC configurations under constrained microcontroller GPIO resources. To address this, both daisy-chain and star topologies are supported by this device.

#### **Daisy-Chain Topology**

The TPAFE51736 supports a daisy-chain mode where multiple devices share common  $\overline{CS}$  and SCLK lines while cascading data through their DAISY\_IN/SDO connections - the first DAISY\_IN of the ADC is grounded, each subsequent ADC's SDO drives the next DAISY\_IN of the device, and the final SDO of the ADC returns to the host controller, creating a simple shift-register topology without requiring special configuration. This approach minimizes host GPIO requirements but introduces timing constraints: designers must account for cumulative propagation delays through the chain and maintain clean clock distribution to ensure reliable data capture at the host, particularly important in systems where conversion results must be synchronized across multiple ADCs.









A typical timing diagram for three devices connected in daisy-chain mode is shown below.

#### Figure 35. Three Devices Connected in Daisy-Chain Mode Timing Diagram

On the falling edge of  $\overline{CS}$ , all ADCs simultaneously sample their analog inputs and begin conversion. During the first 16 SCLK cycles, the host can configure the next conversion by writing register settings via the shared SDI line while all SDO outputs remain low. Post-conversion, each ADC loads its 16-bit result into an internal shift register. At the 16th SCLK falling edge, the MSB is output on each ADC's SDO, with subsequent bits shifted out on later edges—each ADC simultaneously shifts in data from its DAISY\_IN while shifting out its own result. This creates a pipelined output stream where the host receives data in reverse order. For N devices, 16×N SCLK cycles are needed to read all results, plus 16 cycles for the next configuration, totaling 16×(N+1) cycles (e.g., 64 cycles for 3 ADCs). Throughput scales inversely with chain length, making this topology ideal for GPIO-limited systems where latency is secondary to channel density.

The following points must be noted about the daisy-chain configuration illustrated below.

- Since all SDI pins are tied together, every ADC in the chain receives the same configuration data. To enable per-device settings, additional host GPIOs must independently control each ADC's SDI, increasing system complexity.
- Beyond the four devices, excessive capacitive loading on shared  $\overline{CS}$ , SCLK, and SDO lines can introduce signal integrity issues (rise/fall time degradation, clock skew). To mitigate this, insert digital buffers (e.g., CMOS level shifters) on host-driven signals (CS/SCLK) to maintain robust timing margins. Ensure proper impedance matching and minimize trace lengths to reduce reflections.

#### Star Topology

The star topology configuration (Figure 94) connects all ADC devices' SDI and SCLK lines in parallel to the host controller's corresponding outputs, while their SDO outputs are wire-OR'd together to the host's SDI input. Each ADC maintains an independent chip select ( $\overline{CS}$ ) line from the controller, enabling individual device addressing. This architecture provides simultaneous configuration capability through the shared SDI/SCLK bus while allowing selective data retrieval, avoiding the daisy-chain's cumulative latency penalty. However, the wire-OR SDO connection requires careful attention to bus contention risks and proper tri-state management during  $\overline{CS}$  desertion, making robust pull-up resistors and clean signal timing essential for reliable operation in multi-device systems.

The star topology maintains the same timing as standalone operation, with each ADC's data frame controlled by its dedicated  $\overline{CS}$  line while sharing common SDI and SCLK lines with other devices. The host must strictly enforce single-device activation



(only one  $\overline{CS}$  low at a time) to prevent bus contention on the shared, wire-OR'd SDO line, as deselected devices enter Hi-Z state when  $\overline{CS}$  is high. This architecture enables parallel configuration and random-access polling without daisy-chain latency, but requires N+2 GPIOs (for N ADCs) and careful  $\overline{CS}$  sequencing to maintain signal integrity, making it ideal for systems needing low-latency access to individual converters despite increased GPIO overhead. The shared SDO line's capacitive loading (typically limiting SCLK to <20MHz for N>4 devices) must be properly managed with appropriate pull-ups and layout considerations.

Restricting the star configuration to four devices maximum due to increasing capacitive loading on shared SDO and SCLK lines is recommended, which can degrade signal integrity and cause timing violations. For this case, insert digital buffers on both SCLK (host output) and SDO (shared bus).



Figure 36. Star Connection Schematic



#### **Device Modes**

The TPAFE51736 offers various software-programmable modes of operation. Upon power-up, the device enters idle mode, where it remains inactive until receiving a command from the user. All commands to transition between different modes are listed in the command register. Following power-up, the program registers are initialized with default values, necessitating proper configuration settings before initiating any conversions.



#### Continued Operation in the Selected Mode (NO\_OP)

Continuously holding the SDI line low, equivalent to writing zeros to all 16 bits, while the device is operational maintains the device in the last selected mode (STDBY, PWR\_DN, AUTO\_RST, or MAN\_Ch\_n). In this mode, the device holds the settings already configured in the program registers.

In the event of a NO\_OP condition during a read or write operation in the program register (PROG mode), the device retains the current settings of the program registers. Subsequently, the device returns to IDLE mode, awaiting the user to issue a proper command for executing program register read or write configurations.

#### Frame Abort Condition (FRAME\_ABORT)

As described in the Data Acquisition Example section, the digital interface of the device is structured so that each data frame begins with a falling edge of the  $\overline{CS}$  signal. Within the first 16 SCLK cycles, the device reads the 16-bit command word on the SDI line. The device postpones the execution of the command until the reception of the last bit of the command, which is captured on the 16th SCLK falling edge. Throughout this process, the  $\overline{CS}$  signal must remain low. If, for any reason, the  $\overline{CS}$  signal transitions to a high state before the data transmission concludes, the device enters an INVALID state, awaiting a



proper command. This state is referred to as the FRAME\_ABORT condition. While operating in the INVALID mode, any read operation on the device returns invalid data on the SDO line. The output of the ALARM pin continues to reflect the status of the input signal on the previously selected channel.

#### STANDBY Mode (STDBY)

The TPAFE51736 features a low-power standby mode (STDBY) where a portion of the circuit is powered down. Notably, the internal reference and buffer remain active, enabling the devices to fast power up within 10 µs upon exiting the STDBY mode. When transitioning out of STDBY mode, the program registers are not reset to their default values.

To activate the STDBY mode, perform a valid write operation to the command register with the STDBY command set to 8200h. This command is executed, and the device enters STDBY mode on the subsequent rising edge of the  $\overline{CS}$  signal following the write operation. The device remains in STDBY mode if no valid conversion command (AUTO\_RST or MAN\_Ch\_n) is executed and SDI remains low during the subsequent data frames. In STDBY mode, the program register settings can be modified (as detailed in the Program Register Read/Write Operation section) using 16 SCLK cycles. However, if 32 complete SCLK cycles are provided, the device outputs invalid data on the SDO line since there is no ongoing conversion in STDBY mode. Nonetheless, the program register read operation can proceed normally during this mode.



#### Figure 37. Enter and Remain in STDBY Mode Timing Diagram

To exit STDBY mode, execute a valid 16-bit write command to enter either the auto (AUTO\_RST) or manual (MAN\_CH\_n) scan mode. The device initiates the exit from STDBY mode at the following rising edge of the signal. Upon the subsequent falling edge of  $\overline{CS}$ , the device captures the analog input from the channel specified by the MAN\_CH\_n command or the initial channel in the AUTO\_RST mode sequence. To ensure accurate sampling of the input signal, maintain the  $\overline{CS}$  signal width at a minimum of 10 µs after exiting STDBY mode. This duration allows the internal circuitry of the device to be fully powered up and properly biased before the sample is taken. The data output for the selected channel can be read within the same data frame.




Figure 38. Exit STDBY Mode Timing Diagram

### Power-Down Mode (PWR\_DN)

The TPAFE51736 offers both hardware and software power-down modes (PWR\_DN), during which all internal circuitry, including the internal reference and buffer, is powered down. Upon exiting PWR\_DN mode, a minimum of 10 ms is required for the device to power up and convert the selected analog input channel, provided the device is operating in the internal reference mode ( $\overline{\text{REFSEL}} = 0$ ). The hardware power mode is detailed in the  $\overline{\text{RST}}/\text{PD}$  (Input) section. The primary distinction between the hardware and software power-down modes is that the program registers are reset to default values when the devices wake up from hardware power-down, whereas the previous settings of the program registers are retained when waking up from software power-down.

To initiate PWR\_DN mode through software, perform a valid write operation on the command register with a software PWR\_DN command of 8300h. The command is executed, causing the device to enter PWR\_DN mode on the subsequent  $\overline{CS}$  rising edge. The device remains in PWR\_DN mode if no valid conversion command (AUTO\_RST or MAN\_Ch\_n) is executed and SDI remains low during the subsequent data frames. When operating in PWR\_DN mode, the program register settings can be updated using 16 SCLK cycles. However, if 32 complete SCLK cycles are provided, the device returns invalid data on the SDO line because there is no ongoing conversion in PWR\_DN mode. The program register read operation can still take place normally during this mode.



### Figure 39. Enter and Remain in PWR\_DN Mode Timing Diagram



To exit PWR\_DN mode, execute a valid 16-bit write command. The device transitions out of PWR\_DN mode on the following  $\overline{CS}$  rising edge. When operating in internal reference mode (REFSEL = 0), it takes approximately 10 ms for the device to power up the reference and other internal circuits, reaching the necessary accuracy before valid conversion data is output for the selected input channel.



Figure 40. Exit PWR\_DN Mode Timing Diagram

### Auto Channel Enable with Reset (AUTO\_RST)

The TPAFE51736 can be configured to automatically scan the input signal on all analog channels by issuing a valid auto channel sequence with a reset (AUTO\_RST, A000h) command in the command register, as illustrated in. In this process, the  $\overline{CS}$  signal can be raised high immediately after the AUTO\_RST command or after reading the output data of the frame. However, to ensure accurate acquisition and conversion of the input signal on the first selected channel in the next data frame, the command frame must be a complete frame of 32 SCLK cycles.



### Figure 41. Enter AUTO\_RST Mode Timing Diagram

The devices continues operating in AUTO\_RST mode if no other valid command is executed and SDI is kept low, during subsequent data frames. If the AUTO\_RST command is executed again at any time during this mode, the sequence of the scanned channels is reset. The devices return to the lowest count channel of the auto-scan sequence in the program register and repeat the sequence. The timing diagram below illustrates this behavior using an example where channels 0 to 2 are selected in the auto sequence.





Figure 42. Device Operation Example in AUTO\_RST Mode

### Manual Channel n Select (MAN\_Ch\_n)

The TPAFE51736 can be configured to convert a specific analog input channel by operating in manual channel n scan mode (MAN\_Ch\_n). This configuration is achieved by writing a valid manual channel n select command (MAN\_Ch\_n) in the command register. In the below timing diagram, the  $\overline{CS}$  signal can be pulled high immediately after the MAN\_Ch\_n command or after reading the output data of the frame. However, for accurate acquisition and conversion of the input signal on the next channel, the command frame must be a complete frame of 32 SCLK cycles.



### Figure 43. Enter MAN\_Ch\_n Scan Mode Timing Diagram

Upon executing the manual channel n select command (MAN\_Ch\_n), the devices sample the analog input on the specified channel during the  $\overline{CS}$  falling edge of the subsequent data frame. The input voltage range for each channel in the MAN\_Ch\_n mode can be configured by setting the related program registers. If no other valid command is executed and SDI is kept low during subsequent data frames, the device continues to sample the analog input on the same channel. The timing diagram below illustrates this behavior, using channel 1 as an example in the manual sequencing mode.





Figure 44. Device Operation in MAN\_Ch\_n Mode

### Channel Sequencing Modes

The TPAFE51736 provides two channel sequencing modes: AUTO\_RST and MAN\_Ch\_n.

In AUTO\_RST mode, the channel number automatically increments in every subsequent frame. As explained in the Auto-Scan Sequencing Control Registers section, the analog inputs can be selected for an automatic scan with a register setting. The device automatically scans only the selected analog inputs in ascending order. The unselected analog input channels can also be powered down to optimize power consumption in this mode of operation. The auto-mode sequence can be reset at any time during an automatic scan using the AUTO\_RST command. When the reset command is received, the ongoing auto-mode sequence is reset and restarted from the lowest selected channel in the sequence.

In MAN\_Ch\_n mode, the same input channel is selected during every data conversion frame. The input command words to select individual analog channels in MAN\_Ch\_n mode are listed in the Command Register Map. If a particular input channel is selected during a data frame, then the analog inputs on the same channel are sampled during the next data frame. The figure below illustrates the SDI command sequence for transitions from AUTO RST to MAN Ch n mode.



### Figure 45. Transitioning from AUTO\_RST to MAN\_Ch\_n Mode (Channels 0 and 6 are Selected for Auto Sequence)

The following figure illustrates the SDI command sequence for transitions from MAN\_Ch\_n to AUTO\_RST mode. It's important to note that each SDI command is executed on the next  $\overline{\text{CS}}$  falling edge. Additionally, an RST command can



be issued at any instant during any channel sequencing mode, and upon execution, the device is placed into a default power-up state in the next data frame.



### Figure 46. Transitioning from MAN\_Ch\_n to AUTO\_RST Mode (Channels 0 and 6 are Selected for Auto Sequence)

### Reset Program Registers (RST)

The TPAFE51736 offers both hardware and software reset (RST) modes, resetting all program registers to their default values. The hardware reset is achieved through a dedicated pin RST/PD (Input).

For a software reset, the program registers can be reset during any data frame by executing a valid write operation on the command register with an RST command of 8500h. The device remains in RST mode if no valid conversion command (AUTO\_RST or MAN\_Ch\_n) is executed, and SDI remains low during subsequent data frames. In RST mode, the program register settings can be updated using 16 SCLK cycles. However, providing 32 complete SCLK cycles results in invalid data on the SDO line, as there is no ongoing conversion in RST mode. During this mode, program register values can be read normally. To initiate a conversion on a specific analog channel using default program register settings, a valid AUTO\_RST or MAN\_CH\_n channel selection command must be executed.



### Figure 47. Reset Program Registers (RST) Timing Diagram



### **Register Maps**

The TPAFE51736 provides two main categories: command registers and program registers.

The command registers are utilized for selecting the channel sequencing mode (AUTO\_RST or MAN\_Ch\_n), configuring the device in standby (STDBY) or power-down (PWR\_DN) mode, and performing a reset (RST) to initialize program registers to their default values.

The program registers serve various purposes, including selecting the sequence of channels for AUTO\_RST mode, specifying the SDO output format, controlling input range settings for individual channels, managing the ALARM feature, reading alarm flags, and programming alarm thresholds for each channel. The program registers provide a range of configuration options for customizing the device behavior to specific requirements.



### **Command Registers**

The command register, a write-only 16-bit register, plays a crucial role in configuring the operating modes of TPAFE51736. This register is responsible for selecting the channel sequencing mode (AUTO\_RST or MAN\_Ch\_n), configuring the device in standby (STDBY) or power-down (PWR\_DN) mode, and resetting (RST) the program registers to their default values. The table below provides a comprehensive list of all the command settings available in this register. Upon power-up or reset, the command register initializes with all bits set to 0, and the device remains in a standby state, awaiting a command to be written before entering any operational mode. The universal timing figure illustrates a typical timing diagram for writing a 16-bit command into the device. The execution of the command takes place at the conclusion of the specific data frame when the  $\overline{CS}$  signal transitions to a high state.

| Register                                      |     |     |     |     | SB<br>yte |     |    |    | LSB Byte  | Command | Operation in the                        |
|-----------------------------------------------|-----|-----|-----|-----|-----------|-----|----|----|-----------|---------|-----------------------------------------|
|                                               | B15 | B14 | B13 | B12 | B11       | B10 | В9 | B8 | B[7:0]    | (Hex)   | Next Frame                              |
| Continued Operation<br>(NO_OP)                | 0   | 0   | 0   | 0   | 0         | 0   | 0  | 0  | 0000 0000 | 0000h   | Continue operation in the previous mode |
| Standby<br>(STDBY)                            | 1   | 0   | 0   | 0   | 0         | 0   | 1  | 0  | 0000 0000 | 8200h   | Device is placed into standby mode      |
| Power Down<br>(PWR_DN)                        | 1   | 0   | 0   | 0   | 0         | 0   | 1  | 1  | 0000 0000 | 8300h   | Device is powered down                  |
| Reset program registers<br>(RST)              | 1   | 0   | 0   | 0   | 0         | 1   | 0  | 1  | 0000 0000 | 8500h   | Program register is reset to default    |
| Auto Ch. Sequence<br>with Reset<br>(AUTO_RST) | 1   | 0   | 1   | 0   | 0         | 0   | 0  | 0  | 0000 0000 | A000h   | Auto mode enabled following a reset     |
| Manual Ch 0 Selection<br>(MAN_Ch_0)           | 1   | 1   | 0   | 0   | 0         | 0   | 0  | 0  | 0000 0000 | C000h   | Channel 0 input is selected             |
| Manual Ch 1 Selection<br>(MAN_Ch_1)           | 1   | 1   | 0   | 0   | 0         | 1   | 0  | 0  | 0000 0000 | C400h   | Channel 1 input is selected             |

#### Table 7. Command Register Map



| Register                                           |     | MSB<br>Byte |     |     |     |     |    |    |           | Command | Operation in the              |  |
|----------------------------------------------------|-----|-------------|-----|-----|-----|-----|----|----|-----------|---------|-------------------------------|--|
|                                                    | B15 | B14         | B13 | B12 | B11 | B10 | B9 | B8 | B[7:0]    | (Hex)   | Next Frame                    |  |
| Manual Ch 2 Selection<br>(MAN_Ch_2)                | 1   | 1           | 0   | 0   | 1   | 0   | 0  | 0  | 0000 0000 | C800h   | Channel 2 input is selected   |  |
| Manual Ch 3 Selection<br>(MAN_Ch_3)                | 1   | 1           | 0   | 0   | 1   | 1   | 0  | 0  | 0000 0000 | CC00h   | Channel 3 input is selected   |  |
| Manual Ch 4 Selection<br>(MAN_Ch_4) <sup>(1)</sup> | 1   | 1           | 0   | 1   | 0   | 0   | 0  | 0  | 0000 0000 | D000h   | Channel 4 input is selected   |  |
| Manual Ch 5 Selection<br>(MAN_Ch_5)                | 1   | 1           | 0   | 1   | 0   | 1   | 0  | 0  | 0000 0000 | D400h   | Channel 5 input is selected   |  |
| Manual Ch 6 Selection<br>(MAN_Ch_6)                | 1   | 1           | 0   | 1   | 1   | 0   | 0  | 0  | 0000 0000 | D800h   | Channel 6 input is selected   |  |
| Manual Ch 7 Selection<br>(MAN_Ch_7)                | 1   | 1           | 0   | 1   | 1   | 1   | 0  | 0  | 0000 0000 | DC00h   | Channel 7 input is selected   |  |
| Manual AUX Selection<br>(MAN_AUX)                  | 1   | 1           | 1   | 0   | 0   | 0   | 0  | 0  | 0000 0000 | E000h   | AUX channel input is selected |  |

(1) Shading registers are not available for 4-channel version devices.



### **Program Registers**

### **Program Registers**

The program register, a 16-bit register, is instrumental in configuring the operating modes of the TPAFE51736. This setting of the register configures the selection of the channel sequence for AUTO\_RST mode, configuration of the device ID in daisy-chain mode, choice of the SDO output format, control of input range settings for individual channels, management of the ALARM feature, reading the alarm flags, and programming the alarm thresholds for each channel. The table below provides a comprehensive list of all the program settings available in this register. Upon power-up or reset, the various program registers within the device initialize with their default values. The device remains in a standby state, waiting for a command to be written before entering any operational mode.

### Program Register Read/Write Operation

The program register serves as a 16-bit read or write register in the TPAFE51736. To initiate any read or write operation to the program registers, a minimum of 24 SCLKs is required after the falling edge of  $\overline{CS}$ . When  $\overline{CS}$  is pulled low, the SDO line also transitions low. The device interprets the command, with the first seven bits (bits 15-9) indicating the register address and the eighth bit (bit 8) specifying the write or read instruction.

During a write cycle, the next eight bits (bits 7-0) on SDI represent the desired data for the addressed register. Over the subsequent eight SCLK cycles, the device outputs this 8-bit data, confirming that it has been successfully written into the register. This readback of data provides a means of verification to ensure the accuracy of the entered data. The figure below illustrates a typical timing diagram for a program register write cycle.

### Table 8. Write Cycle Command Word





### Figure 48. Program Register Write Cycle Timing Diagram

During a read cycle, the next eight bits (bits 7-0) on SDI are considered as don't care bits, and SDO remains low. Starting from the 16th SCLK falling edge and onward, SDO outputs the 8-bit data from the addressed register during the subsequent eight clocks, following an MSB-first format. The figure below presents a typical timing diagram for a program register read cycle.



### Table 9. Read Cycle Command Word



Figure 49. Program Register Read Cycle Timing Diagram



### **Program Registers Map**

Table 10. Program Registers Map

| Register                 | Register<br>Address<br>Bits[15:9] | DEFAULT<br>VALUE <sup>(1)</sup> | Bit 7                 | Bit 6  | Bit 5  | Bit 4     | Bit 3                       | Bit 2                       | Bit 1          | Bit 0  |  |
|--------------------------|-----------------------------------|---------------------------------|-----------------------|--------|--------|-----------|-----------------------------|-----------------------------|----------------|--------|--|
| Auto Scan Sequ           | Nuto Scan Sequencing Control      |                                 |                       |        |        |           |                             |                             |                |        |  |
| AUTO_SEQ_E<br>N          | 01h                               | FFh                             | CH7_EN <sup>(2)</sup> | CH6_EN | CH5_EN | CH4_EN    | CH3_EN                      | CH2_EN                      | CH1_EN         | CH0_EN |  |
| Channel Power<br>Down    | 02h                               | 00h                             | CH7_PD                | CH6_PD | CH5_PD | CH4_PD    | CH3_PD                      | CH2_PD                      | CH1_PD         | CH0_PD |  |
| Device Features          | Device Features Selection Control |                                 |                       |        |        |           |                             |                             |                |        |  |
| Feature Select           | 03h                               | 00h                             | DEV                   | /[1:0] | 0      | ALARM_EN0 | 0                           | SDO [2:0]                   |                |        |  |
| Range Select R           | Range Select Registers            |                                 |                       |        |        |           |                             |                             |                |        |  |
| Channel 0 Input<br>Range | 05h                               | 00h                             | 0                     | 0      | 0      | 0         |                             | Range Select Channel 0[3:0] |                |        |  |
| Channel 1 Input<br>Range | 06h                               | 00h                             | 0                     | 0      | 0      | 0         |                             | Range Select                | Channel 1[3:0] |        |  |
| Channel 2 Input<br>Range | 07h                               | 00h                             | 0                     | 0      | 0      | 0         | Range Select Channel 2[3:0] |                             |                |        |  |
| Channel 3 Input<br>Range | 08h                               | 00h                             | 0                     | 0      | 0      | 0         | Range Select Channel 3[3:0] |                             |                |        |  |
| Channel 4 Input<br>Range | 09h                               | 00h                             | 0                     | 0      | 0      | 0         | Range Select Channel 4[3:0] |                             |                |        |  |
| Channel 5 Input<br>Range | 0Ah                               | 00h                             | 0                     | 0      | 0      | 0         | Range Select Channel 5[3:0] |                             |                |        |  |



| Channel 6 Input<br>Range          | 0Bh                          | 00h       | 0                             | 0                              | 0                             | 0                              | Range Select Channel 6[3:0]   |                                |                               |                                |  |  |
|-----------------------------------|------------------------------|-----------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|-------------------------------|--------------------------------|--|--|
| Channel 7 Input<br>Range          | 0Ch                          | 00h       | 0                             | 0                              | 0                             | 0                              | Range Select Channel 7[3:0]   |                                |                               |                                |  |  |
| Oover-range Sel                   | Dover-range Select Registers |           |                               |                                |                               |                                |                               |                                |                               |                                |  |  |
| Channel<br>Overrange              | 0Dh                          | 00h       | CH7_OVER_R<br>ANGE_EN         | CH6_OVER_R<br>ANGE_EN          | CH5_OVER_R<br>ANGE_EN         | CH4_OVER_R<br>ANGE_EN          | CH3_OVER_R<br>ANGE_EN         | CH2_OVER_R<br>ANGE_EN          | CH1_OVER_R<br>ANGE_EN         | CH0_OVER_R<br>ANGE_EN          |  |  |
| LPF Bandwidth                     | Configuration                | Registers |                               |                                |                               |                                |                               |                                |                               |                                |  |  |
| LPF Bandwidth<br>Configuration    | 0Eh                          | 01h       | 0                             | 0                              | 0                             | 0                              | 0                             | 0                              | Bandwidth                     | Select [1:0]                   |  |  |
| CRC Configure Registers           |                              |           |                               |                                |                               |                                |                               |                                |                               |                                |  |  |
| CRC Configure                     | 0Fh                          | 00h       | CRC Error                     | 0                              | 0                             | 0                              | 0                             | 0                              | 0                             | CRC_EN                         |  |  |
| Alarm Flag Regi                   | sters (Read-o                | only)     |                               |                                |                               |                                |                               |                                |                               |                                |  |  |
| ALARM<br>Overview<br>Tripped-Flag | 10h                          | 00h       | Tripped Alarm<br>Flag Ch7     | Tripped Alarm<br>Flag Ch6      | Tripped Alarm<br>Flag Ch5     | Tripped Alarm<br>Flag Ch4      | Tripped Alarm<br>Flag Ch3     | Tripped Alarm<br>Flag Ch2      | Tripped Alarm<br>Flag Ch1     | Tripped Alarm<br>Flag Ch0      |  |  |
| ALARM Ch 0-3<br>Tripped-Flag      | 11h                          | 00h       | Tripped Alarm<br>Flag Ch0 Low | Tripped Alarm<br>Flag Ch0 High | Tripped Alarm<br>Flag Ch1 Low | Tripped Alarm<br>Flag Ch1 High | Tripped Alarm<br>Flag Ch2 Low | Tripped Alarm<br>Flag Ch2 High | Tripped Alarm<br>Flag Ch3 Low | Tripped Alarm<br>Flag Ch3 High |  |  |
| ALARM Ch 0-3<br>Active-Flag       | 12h                          | 00h       | Active Alarm<br>Flag Ch0 Low  | Active Alarm<br>Flag Ch0 High  | Active Alarm<br>Flag Ch1 Low  | Active Alarm<br>Flag Ch1 High  | Active Alarm<br>Flag Ch2 Low  | Active Alarm<br>Flag Ch2 High  | Active Alarm<br>Flag Ch3 Low  | Active Alarm<br>Flag Ch3 High  |  |  |
| ALARM Ch 4-7<br>Tripped-Flag      | 13h                          | 00h       | Tripped Alarm<br>Flag Ch4 Low | Tripped Alarm<br>Flag Ch4 High | Tripped Alarm<br>Flag Ch5 Low | Tripped Alarm<br>Flag Ch5 High | Tripped Alarm<br>Flag Ch6 Low | Tripped Alarm<br>Flag Ch6 High | Tripped Alarm<br>Flag Ch7 Low | Tripped Alarm<br>Flag Ch7 High |  |  |
| ALARM Ch 4-7<br>Active-Flag       | 14h                          | 00h       | Active Alarm<br>Flag Ch4 Low  | Active Alarm<br>Flag Ch4 High  | Active Alarm<br>Flag Ch5 Low  | Active Alarm<br>Flag Ch5 High  | Active Alarm<br>Flag Ch6 Low  | Active Alarm<br>Flag Ch6 High  | Active Alarm<br>Flag Ch7 Low  | Active Alarm<br>Flag Ch7 High  |  |  |
| Alarm Threshold                   | d Registers                  |           |                               |                                |                               |                                |                               |                                |                               |                                |  |  |



| Ch 0 Hysteresis            | 15h         | 00h   | CH0_HYST[7:0]                                                                                              |
|----------------------------|-------------|-------|------------------------------------------------------------------------------------------------------------|
| Ch 0 High<br>Threshold MSB | 16h         | FFh   | CH0_HT[15:8]                                                                                               |
| Ch 0 High<br>Threshold LSB | 17h         | FFh   | CH0_HT[7:0]                                                                                                |
| Ch 0 Low<br>Threshold MSB  | 18h         | 00h   | CH0_LT[15:8]                                                                                               |
| Ch 0 Low<br>Threshold LSB  | 19h         | 00h   | CH0_LT[7:0]                                                                                                |
|                            |             |       | <br>See the Alarm Threshold Setting Registersfor details regarding the ALARM threshold settings registers. |
| Ch 7 Hysteresis            | 38h         | 00h   | CH7_HYST[7:0]                                                                                              |
| Ch 7 High<br>Threshold MSB | 39h         | FFh   | CH7_HT[15:8]                                                                                               |
| Ch 7 High<br>Threshold LSB | 3Ah         | FFh   | CH7_HT[7:0]                                                                                                |
| Ch 7 Low<br>Threshold MSB  | 3Bh         | 00h   | CH7_LT[15:8]                                                                                               |
| Ch 7 Low<br>Threshold LSB  | 3Ch         | 00h   | CH7_LT[7:0]                                                                                                |
| Command Read               | Back (Read- | only) |                                                                                                            |
| Command<br>Read Back       | 3Fh         | 00h   | COMMAND_WORD[7:0]                                                                                          |
| Open Detection             | Enable      |       |                                                                                                            |



## **TPAFE51736S8**

## 16-bit, 500-kSPS, 8-channel, Bipolar Input ADC

| Open Detection           | 78h         | 00h  | CH7_OPEN_D  | CH6_OPEN_D               |             | CH4_OPEN_D  | CH3_OPEN_D  | CH2_OPEN_D     | CH1_OPEN_D                        | CH0_OPEN_D            |  |  |
|--------------------------|-------------|------|-------------|--------------------------|-------------|-------------|-------------|----------------|-----------------------------------|-----------------------|--|--|
| Configure                | 7.011       | 0011 | ETECTION_EN | ETECTION_EN              | ETECTION_EN | ETECTION_EN | ETECTION_EN | ETECTION_EN    | ETECTION_EN                       | ETECTION_EN           |  |  |
| Open Detected            | (Read-only) |      |             |                          |             |             |             |                |                                   |                       |  |  |
| Open Detected            | 79h         | 00h  | CH7_OPEN    | CH6_OPEN                 | CH5_OPEN    | CH4_OPEN    | CH3_OPEN    | CH2_OPEN       | CH1_OPEN                          | CH0_OPEN              |  |  |
| Open Detection Mode      |             |      |             |                          |             |             |             |                |                                   |                       |  |  |
| Open Detection<br>Mode   | 7Ah         | 00h  |             | Open Detection Mode[7:0] |             |             |             |                |                                   |                       |  |  |
| Open Detected            | Threshold   |      |             |                          |             |             |             |                |                                   |                       |  |  |
| Open Detect<br>Threshold | 7Bh         | 00h  | 0           | 0                        |             |             | Open Detect | Threshold[5:0] |                                   |                       |  |  |
| Status                   |             |      |             |                          |             |             |             |                |                                   |                       |  |  |
| Status                   | 7Dh         | 00h  | 0           | 0                        | 0           | 0           | 0           | Open Detected  | ALARM<br>Overview<br>Tripped-Flag | CRE Error<br>Detected |  |  |

(1) Shading registers are not available for 4-channel version devices.



### Auto-Scan Sequence Enable Register (address = 01h)

In AUTO\_RST mode, the device automatically scans the preselected channels in ascending order, with a new channel chosen for every conversion. Each specific channel can be selectively included in the auto-channel sequencing. For channels not selected for auto-sequencing, the analog front-end circuitry can be individually powered down.

This register selects individual channels for sequencing in AUTO\_RST mode. The default value for this register is FFh, implying that, in the default condition, all channels are included in the auto-scan sequence. If no channels are included in the auto sequence (i.e., the value for this register is 00h), then channel 0 is selected for conversion by default.

| Bit | Field  | Туре | Reset | Description                                                                                                                                     |
|-----|--------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | CH7_EN | R/W  | 1h    | Channel 7 enable.<br>0 = Channel 7 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 7 is selected for sequencing in AUTO_RST mode |
| 6   | CH6_EN | R/W  | 1h    | Channel 6 enable.<br>0 = Channel 6 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 6 is selected for sequencing in AUTO_RST mode |
| 5   | CH5_EN | R/W  | 1h    | Channel 5 enable.<br>0 = Channel 5 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 5 is selected for sequencing in AUTO_RST mode |
| 4   | CH4_EN | R/W  | 1h    | Channel 4 enable.<br>0 = Channel 4 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 4 is selected for sequencing in AUTO_RST mode |
| 3   | CH3_EN | R/W  | 1h    | Channel 3 enable.<br>0 = Channel 3 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 3 is selected for sequencing in AUTO_RST mode |
| 2   | CH2_EN | R/W  | 1h    | Channel 2 enable.<br>0 = Channel 2 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 2 is selected for sequencing in AUTO_RST mode |
| 1   | CH1_EN | R/W  | 1h    | Channel 1 enable.<br>0 = Channel 1 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 1 is selected for sequencing in AUTO_RST mode |
| 0   | CH0_EN | R/W  | 1h    | Channel 0 enable.<br>0 = Channel 0 is not selected for sequencing in AUTO_RST mode<br>1 = Channel 0 is selected for sequencing in AUTO_RST mode |

### Table 11. AUTO\_SEQ\_EN Register



### Channel Power Down Register (address = 02h)

This register powers down individual channels that are not included for sequencing in AUTO\_RST mode. The default value for this register is 00h, which implies that, in the default condition, all channels are powered up. If all channels are powered down (i.e., the value for this register is FFh), then the analog front-end circuits for all channels are powered down, and the output of the ADC contains invalid data. If the device is in MAN-Ch\_n mode and the selected channel is powered down, then the device yields invalid output, which can also trigger a false alarm condition.

| Bit | Field  | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----|--------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | CH7_PD | R/W  | Oh    | Channel 7 power-down.<br>0 = The analog front-end on channel 7 is powered up and channel 7 can be<br>included in the AUTO_RST sequence<br>1 = The analog front-end on channel 7 is powered down and channel 7<br>cannot be included in the AUTO_RST sequence |
| 6   | CH6_PD | R/W  | Oh    | Channel 6 power-down.<br>0 = The analog front-end on channel 6 is powered up and channel 6 can be<br>included in the AUTO_RST sequence<br>1 = The analog front-end on channel 6 is powered down and channel 6<br>cannot be included in the AUTO_RST sequence |
| 5   | CH5_PD | R/W  | Oh    | Channel 5 power-down.<br>0 = The analog front-end on channel 5 is powered up and channel 5 can be<br>included in the AUTO_RST sequence<br>1 = The analog front-end on channel 5 is powered down and channel 5<br>cannot be included in the AUTO_RST sequence |
| 4   | CH4_PD | R/W  | Oh    | Channel 4 power-down.<br>0 = The analog front-end on channel 4 is powered up and channel 4 can be<br>included in the AUTO_RST sequence<br>1 = The analog front-end on channel 4 is powered down and channel 4<br>cannot be included in the AUTO_RST sequence |
| 3   | CH3_PD | R/W  | Oh    | Channel 3 power-down.<br>0 = The analog front-end on channel 3 is powered up and channel 3 can be<br>included in the AUTO_RST sequence<br>1 = The analog front end on channel 3 is powered down and channel 3<br>cannot be included in the AUTO_RST sequence |
| 2   | CH2_PD | R/W  | Oh    | Channel 2 power-down.<br>0 = The analog front end on channel 2 is powered up and channel 2 can be<br>included in the AUTO_RST sequence<br>1 = The analog front end on channel 2 is powered down and channel 2<br>cannot be included in the AUTO_RST sequence |
| 1   | CH1_PD | R/W  | Oh    | Channel 1 power-down.<br>0 = The analog front end on channel 1 is powered up and channel 1 can be<br>included in the AUTO_RST sequence<br>1 = The analog front end on channel 1 is powered down and channel 1<br>cannot be included in the AUTO_RST sequence |

### Table 12. Channel Power Down Register Field Descriptions



| Bit | Field  | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----|--------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | CH0_PD | R/W  | Oh    | Channel 0 power-down.<br>0 = The analog front end on channel 0 is powered up and channel 0 can be<br>included in the AUTO_RST sequence<br>1 = The analog front end on channel 0 is powered down and channel 0<br>cannot be included in the AUTO_RST sequence |



### **Device Features Selection Control Register (address = 03h)**

The bits in this register can be used to configure the device ID for daisy-chain operation, enable the ALARM feature, and configure the output bit format on SDO.

| Bit | Field    | Туре | Reset | Description                              |  |
|-----|----------|------|-------|------------------------------------------|--|
|     |          |      |       | Device ID bits                           |  |
|     |          |      |       | 00 = ID for device 0 in daisy-chain mode |  |
| 7-6 | DEV[1:0] | R/W  | 0h    | 01 = ID for device 1 in daisy-chain mode |  |
|     |          |      |       | 10 = ID for device 2 in daisy-chain mode |  |
|     |          |      |       | 11 = ID for device 3 in daisy-chain mode |  |
| 5   | 0        | R    | 0h    | Must always be set to 0                  |  |
|     |          | R/W  | 0h    | ALARM feature enable                     |  |
| 4   | 0        |      |       | 0 = ALARM feature is disabled            |  |
|     |          |      |       | 1 = ALARM feature is enabled             |  |
| 3   | 0        | R    | 0h    | 0h Must always be set to 0               |  |
| 2-0 | SDO[2:0] | R/W  | 0h    | SDO data format bits                     |  |

### Table 13. Feature Select Register Field Descriptions

### Table 14. Description of Program Register Bits for SDO Data Format

| SDO Format | Begining of the                    |                                                          | Output Format                     |                               |                            |  |  |  |  |  |
|------------|------------------------------------|----------------------------------------------------------|-----------------------------------|-------------------------------|----------------------------|--|--|--|--|--|
| SDO[2:0]   | Output Bit Stream                  | BITS 24-9                                                | BITS 8-5                          | BITS 4-3                      | BITS 2-0                   |  |  |  |  |  |
| 000        | 16th SCLK falling edge, no latency | Conversion result<br>for selected<br>channel (MSB-first) | SDO pulled low                    |                               |                            |  |  |  |  |  |
| 001        | 16th SCLK falling edge, no latency | Conversion result<br>for selected<br>channel (MSB-first) | Channel<br>address <sup>(1)</sup> | SDO pulled low                |                            |  |  |  |  |  |
| 010        | 010<br>6dge, no latency            |                                                          | Channel<br>address <sup>(1)</sup> | Device address <sup>(1)</sup> | SDO pulled low             |  |  |  |  |  |
| 011        | 16th SCLK falling edge, no latency | Conversion result<br>for selected<br>channel (MSB-first) | Channel<br>address <sup>(1)</sup> | Device address <sup>(1)</sup> | Input range <sup>(1)</sup> |  |  |  |  |  |

(1) The table below lists the bit descriptions for these channel addresses, device addresses, and input range.

### Table 15. Bit Description for the SDO Data

| Bit  | Bit Description                                                                        |
|------|----------------------------------------------------------------------------------------|
| 24-9 | 16 bits of conversion result for the channel represented in MSB-first format           |
|      | Four bits of channel address. 0000 = Channel 0<br>0001 = Channel 1<br>0010 = Channel 2 |



| Bit | Bit Description                                                             |
|-----|-----------------------------------------------------------------------------|
|     | 0011 = Channel 3                                                            |
|     | 0100 = Channel 4 (valid only for the 8-channel version device)              |
|     | 0101 = Channel 5 (valid only for the 8-channel version device)              |
|     | 0110 = Channel 6 (valid only for the 8-channel version device)              |
|     | 0111 = Channel 7 (valid only for the 8-channel version device)              |
| 4-3 | Two bits of device address (mainly useful in daisy-chain mode)              |
| 2-0 | Three LSB bits of input voltage range (Refer to the Range Select Registers) |



### Range Select Registers (addresses 05h-0Ch)

Address 05h corresponds to channel 0, address 06h corresponds to channel 1, address 07h corresponds to channel 2, address 08h corresponds to channel 3, address 09h corresponds to channel 4, address 0Ah corresponds to channel 5, address 0Bh corresponds to channel 6, and address 0Ch corresponds to channel 7. These registers allow the selection of input ranges for all individual channels (n = 0 to 3 for the 4-channel version device and n = 0 to 7 for the 8-channel version device). The default value for these registers is 00h

| Bit | Field          | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------------|------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-4 | 0              | R    | 0h    | Must always be set to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3-0 | Range_CHn[3:0] | R/W  | 0     | Input range selection bits for channel n (n = 0 to 3 for the 4-channel version and n = 0 to 7 for the 8-channel version devices)<br>0000 = Input range is set to $\pm 2.5 \times V_{REF}$ (Single-ended)<br>0001 = Input range is set to $\pm 1.25 \times V_{REF}$ (Single-ended)<br>0010 = Input range is set to $\pm 0.625 \times V_{REF}$ (Single-ended)<br>0011 = Input range is set to $\pm 2.5 \times V_{REF}$ (Differential)<br>0100 = Input range is set to $\pm 1.25 \times V_{REF}$ (Differential)<br>0101 = Input range is set to $\pm 1.25 \times V_{REF}$ (Differential)<br>0101 = Input range is set to 0 to 2.5 $\times V_{REF}$<br>0110 = Input range is set to 0 to 1.25 $\times V_{REF}$ |

#### Table 16. Channel n Input Range Registers Field Descriptions



### Over Range Setting Registers (address 0Dh)

The channel input range can be expanded to 20% of the range set in Range Select Registers. Also, the over range can be configured individually for each channel.

| Bit | Field           | Туре | Reset | Description                                                                                                                                                               |
|-----|-----------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Over_Range_CH 7 | R/W  | 0     | Channel 7 over range control.<br>0b = Channel 7 range as programmed in register 0Ch<br>1b = Enable 20% Overrange for Channel 7 range set as programmed in<br>register 0Ch |
| 6   | Over_Range_CH 6 | R/W  | 0     | Channel 6 over range control.<br>0b = Channel 6 range as programmed in register 0Bh<br>1b = Enable 20% Overrange for Channel 6 range set as programmed in<br>register 0Bh |
| 5   | Over_Range_CH 5 | R/W  | 0     | Channel 5 over range control.<br>0b = Channel 5 range as programmed in register 0Ah<br>1b = Enable 20% Overrange for Channel 5 range set as programmed in<br>register 0Ah |
| 4   | Over_Range_CH 4 | R/W  | 0     | Channel 4 over range control.<br>0b = Channel 4 range as programmed in register 09h<br>1b = Enable 20% Overrange for Channel 4 range set as programmed in<br>register 09h |
| 3   | Over_Range_CH 3 | R/W  | 0     | Channel 3 over range control.<br>0b = Channel 3 range as programmed in register 08h<br>1b = Enable 20% Overrange for Channel 3 range set as programmed in<br>register 08h |
| 2   | Over_Range_CH 2 | R/W  | 0     | Channel 2 over range control.<br>0b = Channel 2 range as programmed in register 07h<br>1b = Enable 20% Overrange for Channel 2 range set as programmed in<br>register 07h |
| 1   | Over_Range_CH 1 | R/W  | 0     | Channel 1 over range control.<br>0b = Channel 1 range as programmed in register 06h<br>1b = Enable 20% Overrange for Channel 1 range set as programmed in<br>register 06h |
| 0   | Over_Range_CH 0 | R/W  | 0     | Channel 0 over range control.<br>0b = Channel 0 range as programmed in register 09h<br>1b = Enable 20% Overrange for Channel 0 range set as programmed in<br>register 05h |

### Table 17. Over Range Setting Registers Field Descriptions



### LPF Bandwidth Configuration Registers (address 0Eh)

The AFE LPF -3dB bandwidth is configurable for all channels simultaneously, which can cover more application scenarios.

| Bit | Field            | Туре | Reset | Description                                                                                                        |
|-----|------------------|------|-------|--------------------------------------------------------------------------------------------------------------------|
| 7-2 | 0                | R    | 0h    | Must always be set to 0                                                                                            |
| 1-0 | LPF_CONFIG [1:0] | R/W  | 01h   | 00 = LPF -3dB bandwidth is 35 kHz<br>01 = LPF -3dB bandwidth is 15 kHz<br>10 = Not available<br>11 = Not available |



### CRC Configure Register (address = 0Fh)

These registers store alarm conditions related to individual channels, and their flags can be read when an alarm interrupt is received on the ALARM pin. Each alarm has two flags: active and tripped. The active flag is set to 1 during the alarm condition, persisting as long as the alarm condition exists. The tripped flag also activates during an alarm condition but remains set until it is read. This feature eliminates the need for the device to continuously track the alarm.

The ALARM overview tripper-flags register compiles the logical OR of high or low tripped alarm flags for all eight channels.

| Bit | Field                        | Туре  | Reset | Description                       |
|-----|------------------------------|-------|-------|-----------------------------------|
|     | 7 CRC_Error                  |       |       | Receive command CRC error status. |
| 7   |                              |       | 0h    | 0 = CRC error                     |
|     |                              |       |       | 1 = CRC pass                      |
| 6-1 | 0                            | R     | 0h    | Must always be set to 0           |
| 0   | Enables interface CRC check  | R/W   | 0h    | 0 = Interface CRC check disabled  |
| U   | Enables interface Cive check | 17/00 | 011   | 1 = Interface CRC check enabled   |

### Table 19. CRC Configure Register Field Descriptions

### Alarm Overview Tripped-flag Register (address = 10h)

These registers store alarm conditions related to individual channels, and their flags can be read when an alarm interrupt is received on the ALARM pin. Each alarm has two flags: active and tripped. The active flag is set to 1 during the alarm condition, persisting as long as the alarm condition exists. The tripped flag also activates during an alarm condition but remains set until it is read. This feature eliminates the need for the device to continuously track the alarm.

The ALARM overview tripper-flags register compiles the logical OR of high or low tripped alarm flags for all eight channels.

### Table 20. Alarm Overview Tripped-flag Register Field Descriptions

| Bit | Field                  | Туре | Reset                                    | Description                                                                                                              |
|-----|------------------------|------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 7   | Tripped Alarm Flag Ch7 | R    | 0h                                       |                                                                                                                          |
| 6   | Tripped Alarm Flag Ch6 | R    | 0h                                       | Trinned clarm flog for all appleg channels at a glance                                                                   |
| 5   | Tripped Alarm Flag Ch5 | R    | 0h                                       | Tripped alarm flag for all analog channels at a glance.<br>Each individual bit indicates a tripped alarm flag status for |
| 4   | Tripped Alarm Flag Ch4 | R    | 0h                                       | each channel, as per the alarm flags register for channels                                                               |
| 3   | Tripped Alarm Flag Ch3 | R    | 0h                                       | 7 to 0, respectively.                                                                                                    |
| 2   | Tripped Alarm Flag Ch2 | R    | 0h   • • • • • • • • • • • • • • • • • • | 0 = No alarm detected                                                                                                    |
| 1   | Tripped Alarm Flag Ch1 | R    | 0h                                       | 1 = Alarm detected                                                                                                       |
| 0   | Tripped Alarm Flag Ch0 | R    | 0h                                       |                                                                                                                          |



### Alarm Flag Registers: Tripped and Active (address = 11h-14h)

Each channel has two alarm thresholds (high and low), and each threshold has two associated flags. An active alarm flag is activated when an alarm is triggered (i.e., when data crosses the alarm threshold) and stays active as long as the alarm condition persists. On the other hand, a tripped alarm flag is activated in a similar manner to the active alarm flag but remains latched until it is read. Registers 11h to 14h in the program registers store both the active and tripped alarm flags for all eight individual channels.

### Table 21. Alarm Ch0-3 Tripped-flag Register Field Descriptions

| Bit | Field                                               | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----|-----------------------------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | Tripped Alarm Flag Ch n<br>Low or High (n = 0 to 3) | R    | Oh    | Tripped alarm flag high, low for channel n (n = 0 to 3)<br>Each individual bit indicates an active high or low alarm flag<br>status for each channel, as per the alarm flags register for<br>channels 0 to 7.<br>0 = No alarm detected<br>1 = Alarm detected |

### Table 22. Alarm Ch0-3 Active-flag Register Field Descriptions

| Bit | Field                                              | Туре | Reset | Description                                                                                                                                                                                                                                                 |
|-----|----------------------------------------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | Active Alarm Flag Ch n<br>Low or High (n = 0 to 3) | R    | Oh    | Active alarm flag high, low for channel n (n = 0 to 3)<br>Each individual bit indicates an active high or low alarm flag<br>status for each channel, as per the alarm flags register for<br>channels 0 to 7.<br>0 = No alarm detected<br>1 = Alarm detected |

### Table 23. Alarm Ch4-7 Tripped-flag Register Field Descriptions

| Bit | Field                                               | Туре | Reset | Description                                                                                                                                                                                                                                                  |
|-----|-----------------------------------------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | Tripped Alarm Flag Ch n<br>Low or High (n = 4 to 7) | R    | Oh    | Tripped alarm flag high, low for channel n (n = 4 to 7)<br>Each individual bit indicates an active high or low alarm flag<br>status for each channel, as per the alarm flags register for<br>channels 0 to 7.<br>0 = No alarm detected<br>1 = Alarm detected |

### Table 24. Alarm Ch4-7 Active-flag Register Field Descriptions

| Bit | Field                                              | Туре | Reset | Description                                                                                                                                                                                                                                                 |
|-----|----------------------------------------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | Active Alarm Flag Ch n<br>Low or High (n = 4 to 7) | R    | Oh    | Active alarm flag high, low for channel n (n = 4 to 7)<br>Each individual bit indicates an active high or low alarm flag<br>status for each channel, as per the alarm flags register for<br>channels 0 to 7.<br>0 = No alarm detected<br>1 = Alarm detected |



### Alarm Threshold Setting Registers (addresses = 15h-3Ch)

The TPAFE51736 is equipped with separate high and low alarm threshold settings for each channel. Each alarm threshold is 16 bits wide and includes an 8-bit hysteresis value, which is consistent for both high and low threshold settings. This 40-bit configuration is achieved through five 8-bit registers linked to each high and low alarm.

| Name                           | ADDR | Bit 7           | Bit 6            | Bit 5 | Bit 4 | Bit 3    | Bit 2 | Bit 1 | Bit 0 |
|--------------------------------|------|-----------------|------------------|-------|-------|----------|-------|-------|-------|
| Ch 0 Hysteresis                | 15h  | CH0_HYST[7:0]   |                  |       |       |          |       |       |       |
| Ch 0 High Threshold MSB        |      | CH0_HT[15:8]    |                  |       |       |          |       |       |       |
| Ch 0 High Threshold LSB        | 17h  |                 |                  |       | CH0_H | IT[7:0]  |       |       |       |
| Ch 0 Low Threshold MSB         | 18h  |                 |                  |       | CH0_L | T[15:8]  |       |       |       |
| Ch 0 Low Threshold LSB         | 19h  |                 |                  |       | CH0_I | T[7:0]   |       |       |       |
| Ch 1 Hysteresis                | 1Ah  |                 |                  |       | CH1_H | ′ST[7:0] |       |       |       |
| Ch 1 High Threshold MSB        | 1Bh  |                 |                  |       | CH1_H | T[15:8]  |       |       |       |
| Ch 1 High Threshold LSB        | 1Ch  |                 |                  |       | CH1_H | IT[7:0]  |       |       |       |
| Ch 1 Low Threshold MSB         | 1Dh  |                 |                  |       | CH1_L | T[15:8]  |       |       |       |
| Ch 1 Low Threshold LSB         | 1Eh  |                 |                  |       | CH1_I | T[7:0]   |       |       |       |
| Ch 2 Hysteresis                | 1Fh  |                 |                  |       | CH2_H | ′ST[7:0] |       |       |       |
| Ch 2 High Threshold MSB        | 20h  | CH2_HT[15:8]    |                  |       |       |          |       |       |       |
| Ch 2 High Threshold LSB        | 21h  | <br>CH2_HT[7:0] |                  |       |       |          |       |       |       |
| Ch 2 Low Threshold MSB         | 22h  |                 |                  |       |       |          |       |       |       |
| Ch 2 Low Threshold LSB         | 23h  | <br>CH2_LT[7:0] |                  |       |       |          |       |       |       |
| Ch 3 Hysteresis                | 24h  | CH3_HYST[7:0]   |                  |       |       |          |       |       |       |
| Ch 3 High Threshold MSB        | 25h  |                 | <br>CH3_HT[15:8] |       |       |          |       |       |       |
| Ch 3 High Threshold LSB        | 26h  |                 |                  |       | CH3_H | IT[7:0]  |       |       |       |
| Ch 3 Low Threshold MSB         | 27h  |                 |                  |       | CH3_L | T[15:8]  |       |       |       |
| Ch 3 Low Threshold LSB         | 28h  |                 |                  |       | CH3_I | T[7:0]   |       |       |       |
| Ch 4 Hysteresis <sup>(1)</sup> | 29h  |                 |                  |       | CH4_H | ′ST[7:0] |       |       |       |
| Ch 4 High Threshold MSB        | 2Ah  |                 |                  |       | CH4_H | T[15:8]  |       |       |       |
| Ch 4 High Threshold LSB        | 2Bh  |                 |                  |       | CH4_H | IT[7:0]  |       |       |       |
| Ch 4 Low Threshold MSB         | 2Ch  |                 |                  |       | CH4_L | T[15:8]  |       |       |       |
| Ch 4 Low Threshold LSB         | 2Dh  |                 |                  |       | CH4_I | T[7:0]   |       |       |       |
| Ch 5 Hysteresis                | 2Eh  | CH5_HYST[7:0]   |                  |       |       |          |       |       |       |
| Ch 5 High Threshold MSB        | 2Fh  | CH5_HT[15:8]    |                  |       |       |          |       |       |       |
| Ch 5 High Threshold LSB        | 30h  | CH5_HT[7:0]     |                  |       |       |          |       |       |       |
| Ch 5 Low Threshold MSB         | 31h  | CH5_LT[15:8]    |                  |       |       |          |       |       |       |
| Ch 5 Low Threshold LSB         | 32h  | CH5_LT[7:0]     |                  |       |       |          |       |       |       |
| Ch 6 Hysteresis                | 33h  |                 |                  |       | CH6_H | ′ST[7:0] |       |       |       |
| Ch 6 High Threshold MSB        | 34h  |                 |                  |       | CH6_H | T[15:8]  |       |       |       |

#### Table 25. Alarm Threshold Setting Registers



| Name                    | ADDR | Bit 7         | Bit 6        | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |  |
|-------------------------|------|---------------|--------------|-------|-------|-------|-------|-------|-------|--|
| Ch 6 High Threshold LSB | 35h  |               | CH6_HT[7:0]  |       |       |       |       |       |       |  |
| Ch 6 Low Threshold MSB  | 36h  |               | CH6_LT[15:8] |       |       |       |       |       |       |  |
| Ch 6 Low Threshold LSB  | 37h  | CH6_LT[7:0]   |              |       |       |       |       |       |       |  |
| Ch 7 Hysteresis         | 38h  | CH7_HYST[7:0] |              |       |       |       |       |       |       |  |
| Ch 7 High Threshold MSB | 39h  | CH7_HT[15:8]  |              |       |       |       |       |       |       |  |
| Ch 7 High Threshold LSB | 3Ah  | CH7_HT[7:0]   |              |       |       |       |       |       |       |  |
| Ch 7 Low Threshold MSB  | 3Bh  | CH7_LT[15:8]  |              |       |       |       |       |       |       |  |
| Ch 7 Low Threshold LSB  | 3Ch  |               | CH7_LT[7:0]  |       |       |       |       |       |       |  |

### Table 26. Channel n Hysteresis Register Field Descriptions

| Bit | Field                | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | CH n Hysteresis[7-0] | R/W  | 0h    | These bits set the channel high and low alarm hysteresis for<br>channel n.<br>n = 0 to 7 for the 8-channel version devices;<br>n = 0 to 3 for the 4-channel version devices;<br>For example, bits 7-0 of the channel 0 register (address 15h) set<br>the channel 0 alarm hysteresis.<br>00000000 = No hysteresis<br>00000001 = ±1-LSB hysteresis<br>00000010 to 11111110 = ±2-LSB to ±254-LSB hysteresis<br>11111111 = ±255-LSB hysteresis |

### Table 27. Channel n High Threshold MSB Register Field Descriptions

| Bit | Field        | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|--------------|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | CHn_HT[15:8] | R/W  | 1h    | These bits set the MSB byte for the 16-bit channel n high alarm.<br>n = 0 to 7 for the 8-channel version devices;<br>n = 0 to 3 for the 4-channel version devices;<br>For example, bits 7-0 of the channel 0 register (address 16h) set<br>the MSB byte for the channel 0 high alarm threshold. The channel<br>0 high alarm threshold is AAFFh when bits 7-0 of the ch 0 high<br>threshold MSB register (address 16h) are set to AAh and bits 7-0 of<br>the ch 0 high threshold LSB register (address 17h) are set to FFh.<br>0000 0000 = MSB byte is 00h<br>0000 0001 = MSB byte is 01h<br>0000 0010 to 1110 1111 = MSB byte is 02h to FEh<br>1111 1111 = MSB byte is FFh |

### Table 28. Channel n High Threshold LSB Register Field Descriptions

| Bit | Field       | Туре | Reset | Description                                                                                                       |
|-----|-------------|------|-------|-------------------------------------------------------------------------------------------------------------------|
| 7-0 | CHn_HT[7:0] | R/W  | 1h    | These bits set the LSB byte for the 16-bit channel n high alarm.<br>n = 0 to 7 for the 8-channel version devices; |



| Bit | Field | Туре | Reset | Description                                                         |
|-----|-------|------|-------|---------------------------------------------------------------------|
|     |       |      |       | n = 0 to 3 for the 4-channel version devices;                       |
|     |       |      |       | For example, bits 7-0 of the channel 0 register (address 17h) set   |
|     |       |      |       | the LSB for the channel 0 high alarm threshold. The channel 0 high  |
|     |       |      |       | alarm threshold is AAFFh when bits 7-0 of the ch 0 high threshold   |
|     |       |      |       | MSB register (address 16h) are set to AAh and bits 7- 0 of the ch 0 |
|     |       |      |       | high threshold LSB register (address 17h) are set to FFh.           |
|     |       |      |       | 0000 0000 = LSB byte is 00h                                         |
|     |       |      |       | 0000 0001 = LSB byte is 01h                                         |
|     |       |      |       | 0000 0010 to 1110 1111 = LSB byte is 02h to FEh                     |
|     |       |      |       | 1111 1111 = LSB byte is FFh                                         |

### Table 29. Channel n Low Threshold MSB Register Field Descriptions

| Bit | Field        | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------------|------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | CHn_LT[15:8] | R/W  | 0h    | These bits set the MSB byte for the 16-bit channel n low alarm.<br>n = 0 to 7 for the 8-channel version devices;<br>n = 0 to 3 for the 4-channel version devices;<br>For example, bits 7-0 of the channel 0 register (address 18h) set<br>the MSB byte for the channel 0 low alarm threshold. The channel<br>0 low alarm threshold is AAFFh when bits 7-0 of the ch 0 low<br>threshold MSB register (address 18h) are set to AAh and bits 7-0 of<br>the ch 0 low threshold LSB register (address 19h) are set to FFh.<br>0000 0000 = MSB byte is 00h<br>0000 0001 = MSB byte is 01h<br>0000 0010 to 1110 1111 = MSB byte is 02h to FEh<br>1111 1111 = MSB byte is FFh |

### Table 30. Channel n Low Threshold LSB Register Field Descriptions

| Bit | Field       | Туре | Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----|-------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | CHn_LT[7:0] | R/W  | Oh    | These bits set the LSB byte for the 16-bit channel n low alarm.<br>n = 0 to 7 for the 8-channel version devices;<br>n = 0 to 3 for the 4-channel version devices;<br>For example, bits 7-0 of the channel 0 register (address 19h) set<br>the LSB for the channel 0 low alarm threshold. The channel 0 low<br>alarm threshold is AAFFh when bits 7-0 of the ch 0 low threshold<br>MSB register (address 18h) are set to AAh and bits 7- 0 of the ch 0<br>low threshold LSB register (address 19h) are set to FFh.<br>0000 0000 = LSB byte is 00h<br>0000 0001 = LSB byte is 01h<br>0000 0010 to 1110 1111 = LSB byte is 02h to FEh<br>1111 1111 = LSB byte is FFh |



### Command Read-Back Register (address = 3Fh)

This register allows the device mode of operation to be read. On execution of this command, the device outputs the command word executed in the previous data frame. The output of the command register appears on SDO from the 16th falling edge onwards in an MSB-first format. All information regarding the command register is contained in the first eight bits and the last eight bits are 0 (see Table 6), thus the command read-back operation can be stopped after the 24th SCLK cycle.

#### Table 31. ALARM Overview Tripped-Flag Register Field Descriptions

| Bit | Field              | Туре | Reset | Description                                  |
|-----|--------------------|------|-------|----------------------------------------------|
| 7-0 | COMMAND_WORD[15:8] | R    | 0h    | Command executed in the previous data frame. |



### **Open Detect Enable Register (address = 78h)**

These registers configure the open detect feature, the open circuit detection operates in manual mode or in automatic mode.

| Bit | Field                  | Туре | Reset | Description                                                                                                               |
|-----|------------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------|
| 7   | Ch7 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 7. In manual mode, sets the open detection. |
| 6   | Ch6 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 6. In manual mode, sets the open detection. |
| 5   | Ch5 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 5. In manual mode, sets the open detection. |
| 4   | Ch4 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 4. In manual mode, sets the open detection. |
| 3   | Ch3 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 3. In manual mode, sets the open detection. |
| 2   | Ch2 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 2. In manual mode, sets the open detection. |
| 1   | Ch1 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 1. In manual mode, sets the open detection. |
| 0   | Ch0 Open Detect Enable | R/W  | 0h    | In automatic mode, enables analog input open circuit detection for<br>Channel 0. In manual mode, sets the open detection. |

### Table 32. Open Detect Enable Register Field Descriptions



### **Open Detected Register (address = 79h)**

### Table 33. Open Detected Register Field Descriptions

| Bit | Field             | Туре | Reset | Description                                                                              |
|-----|-------------------|------|-------|------------------------------------------------------------------------------------------|
| 7   | Ch7 Open Detected | R/W  | 0h    | 0 = Analog Input 7 Open Circuit Not Detected<br>1 = Analog Input 7 Open Circuit Detected |
| 6   | Ch6 Open Detected | R/W  | 0h    | 0 = Analog Input 6 Open Circuit Not Detected<br>1 = Analog Input 6 Open Circuit Detected |
| 5   | Ch5 Open Detected | R/W  | 0h    | 0 = Analog Input 5 Open Circuit Not Detected<br>1 = Analog Input 5 Open Circuit Detected |
| 4   | Ch4 Open Detected | R/W  | 0h    | 0 = Analog Input 4 Open Circuit Not Detected<br>1 = Analog Input 4 Open Circuit Detected |
| 3   | Ch3 Open Detected | R/W  | 0h    | 0 = Analog Input 3 Open Circuit Not Detected<br>1 = Analog Input 3 Open Circuit Detected |
| 2   | Ch2 Open Detected | R/W  | 0h    | 0 = Analog Input 2 Open Circuit Not Detected<br>1 = Analog Input 2 Open Circuit Detected |
| 1   | Ch1 Open Detected | R/W  | 0h    | 0 = Analog Input 1 Open Circuit Not Detected<br>1 = Analog Input 1 Open Circuit Detected |
| 0   | Ch0 Open Detected | R/W  | 0h    | 0 = Analog Input 0 Open Circuit Not Detected<br>1 = Analog Input 0 Open Circuit Detected |



### **Open Detect Mode Register (address = 7Ah)**

### Table 34. Open Detect Mode Register Field Descriptions

| Bit | Field            | Туре | Reset | Description                                                                                                                          |
|-----|------------------|------|-------|--------------------------------------------------------------------------------------------------------------------------------------|
| 7-0 | Open Detect Mode | R/W  | 0h    | Open detect mode configuration.<br>0 = Open detect is disabled<br>1 = Manual mode open detect<br>Others = Automatic mode open detect |

### **Open Detect Threshold Register (address = 7Bh)**

These registers configure the open detect threshold, which triggers automatic open detect mode.

### Table 35. Open Detect Threshold Register Field Descriptions

| Bit | Field                 | Туре | Reset | Description                                                                                                                                                                                                   |
|-----|-----------------------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-6 | 0                     | R    | 0h    | Must always be set to 0                                                                                                                                                                                       |
| 5-0 | Open Detect Threshold | R/W  | 0h    | 0 = Default open detect threshold is 350 LSB<br>Others = Open detect threshold = Open detect threshold *<br>256<br>For example, when set to 6'h2, Open detect threshold =<br>16'h = 0200, thus 2*256=512 LSB. |

### Status Register (address = 7Dh)

### Table 36. Status Register Field Descriptions

| Bit | Field                           | Туре | Reset | Description                                                                                                                         |
|-----|---------------------------------|------|-------|-------------------------------------------------------------------------------------------------------------------------------------|
| 7-3 | 0                               | R    | 0h    | Must always be set to 0                                                                                                             |
| 2   | Open Detected                   | R    | Oh    | <ul><li>0 = Normal status</li><li>1 = Open detected. Check the Open Detected Register to check which channel is detected.</li></ul> |
| 1   | ALARM Overview Tripped-<br>Flag | R    | Oh    | 0 = Normal status<br>1 = Alarm detected. Check the ALARM Overview Tripped-<br>Flag Register to check which channel is detected.     |
| 0   | CRE Error Detected              | R    | Oh    | 0 = Normal status<br>1 = CRC Error. CRC error flag, the same as Bit 7 in CRC<br>Configure Register.                                 |



## **Tape and Reel Information**



| Order Number      | Package | D1<br>(mm) | W1<br>(mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | W0<br>(mm) | Pin1<br>Quadrant |
|-------------------|---------|------------|------------|------------|------------|------------|------------|------------|------------------|
| TPAFE51736S8-TS7R | TSSOP38 | 330        | 21.6       | 6.8        | 10.25      | 1.6        | 8          | 16         | Q1               |



### Package Outline Dimensions

TSSOP38





### **Order Information**

| Order Number      | Operating Temperature<br>Range | Package | Marking Information | MSL | Transport Media, Quantity | Eco Plan |
|-------------------|--------------------------------|---------|---------------------|-----|---------------------------|----------|
| TPAFE51736S8-TS7R | −40 to 125°C                   | TSSOP38 | 51736S8             | 2   | Reel, 3000                | Green    |

**Green**: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.



### IMPORTANT NOTICE AND DISCLAIMER

Copyright<sup>©</sup> 3PEAK 2012-2025. All rights reserved.

**Trademarks.** Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

**Performance Information.** Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

**Disclaimer.** 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.



## **TPAFE51736S8**

16-bit, 500-kSPS, 8-channel, Bipolar Input ADC

This page intentionally left blank