

Features

- Supply Voltage: 4.5 V to 36 V (±2.25 V to ±18 V)
- Offset Voltage: ±1 mV (Max)
- Gain Error: 0.03% (Max)
- Bandwidth: 500 kHz, Slew Rate: 10 V/µs
- EMI Enhancement
- Operating Temperature Range: −40°C to 125°C

Applications

- Current Sense on High Common Voltage
- Battery Voltage Monitor
- Industrial Control

Description

The devices are general-purpose, unity-gain difference amplifiers for precision signal conditioning from -275-V to 275-V common voltage range. The on-chip resistors are trimmed for excellent gain accuracy and high CMRR over the operating temperature range.

The TPA9151 has two reference input pins. The TPA9152 has one reference input pin at pin 1, and leaves pin 5 to NC (not connected).

The devices can be used to replace isolation amplifiers in applications where the galvanic isolation is not required.

Typical Application Circuit

TPA9151/TPA9152

275-V Common Voltage Difference Amplifier

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Revision History	3
Pin Configuration and Functions	4
Specifications	6
Absolute Maximum Ratings ⁽¹⁾	6
ESD, Electrostatic Discharge Protection	6
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	9
Detailed Description	10
Overview	10
Functional Block Diagram	10
Application and Implementation	11
Application Information	
Typical Application	
Tape and Reel Information	13
Package Outline Dimensions	
SOP8	14
Order Information	
IMPORTANT NOTICE AND DISCLAIMER	

Revision History

Date	Revision	Notes
2021-07-20	Rev.A.0	Initial version
2021-08-31	Rev.A.1	Updated description in ESD section
2024-01-29	Rev.A.2	Added TPA9152 and TPA9151B
		The following updates are all about the new datasheet formats or typos, and the actual product remains unchanged.
2024-12-18	Rev.A.3	Updated to a new datasheet format.
		Updated to a new format of Package Outline Dimensions.
		Updated the Tape and Reel Information.

Pin Configuration and Functions

Table 1. Pin Functions: TPA9151

Р	in		Description
No.	Name	I/O	Description
1	REFB	I	Reference input B
2	-IN	I	Inverting input
3	+IN	I	Non-inverting input
4	-Vs	Power Supply	Negative power supply ⁽¹⁾
5	REFA	I	Reference input A
6	VOUT	0	Output
7	+Vs	Power Supply	Positive power supply ⁽¹⁾
8	NC		Not connected

(1) In this document, $(+V_S) - (-V_S)$ is referred to V_S .

Table 2. Pin Fuctions: TPA9152

Р	in	1/0	Description
No.	Name	I/O	Description
1	REF	I	Reference input
2	-IN	I	Inverting input
3	+IN	I	Non-inverting input
4	-Vs	Power Supply	Negative power supply ⁽¹⁾
5	NC		Not connected
6	VOUT	0	Output
7	+Vs	Power Supply	Positive power supply ⁽¹⁾
8	NC		Not connected

(1) In this document, $(+V_S) - (-V_S)$ is referred to V_S .

Specifications

Absolute Maximum Ratings ⁽¹⁾

	Parameter	Min	Мах	Unit
	Supply Voltage		40	V
	Input Voltage Range, Continuous		300	V
	Reference Input Voltage	(-V _S) - 0.3	(+V _S) + 0.3	V
TJ	Maximum Junction Temperature		150	°C
T _A	Operating Temperature Range	-40	125	°C
T _{STG}	Storage Temperature Range	-65	150	°C
TL	Lead Temperature (Soldering, 10 sec)		260	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
HBM Human Body Model ESD		ANSI/ESDA/JEDEC JS-001 $^{(1)}$, V _{OUT} to (+V _S) or (-V _S), (+V _S) to (-V _S)	4	kV
	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , +IN or –IN to (+V _S) or (-V _S)	1	kV
		ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , REF _A	400	V
		ANSI/ESDA/JEDEC JS-001 ⁽¹⁾ , REF _B	500	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	1	kV

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	θ _{JA}	θյς	Unit
SOP8	158	43	°C/W

Electrical Characteristics

All test conditions: $(+V_S) = +15 \text{ V}$, $(-V_S) = -15 \text{ V}$, $R_L = 10 \text{ k}\Omega$ to ground, $\text{REF}_A = \text{REF}_B = \text{GND}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Power S	apply					1
Vs	Supply Voltage Range		±2.25		±18	V
		V _{OUT} = 0 V		2	3	mA
lq	Quiescent Current	V _{OUT} = 0 V, T _J = -40°C to 125°C			3.5	mA
Gain			·			
	Initial	V_{OUT} = ±10 V, R _L = 10 k Ω		1		V/V
		$V_{OUT} = \pm 10 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$		0.02	0.03	%FSR
GE	Gain Error	$V_{OUT} = \pm 10 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega,$ $T_{J} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}$			0.05	%FSR
	Gain Drift	V_{OUT} = ±10 V, R _L = 10 kΩ, T _J = -40°C to 125°C		5		PPM/°C
	Nonlinearity	$V_{OUT} = \pm 10 \text{ V}, \text{ R}_{L} = 10 \text{ k}\Omega$		0.002		%FSR
Offset Vo	ltage					
		V _{CM} = 0 V	-1	0.05	1	mV
Vos	Input Offset Voltage	$V_{CM} = 0 V, T_{J} = -40^{\circ}C \text{ to } 125^{\circ}C$	-2		2	mV
VosTC	Offset Voltage Drift	$V_{CM} = 0 V$, $T_J = -40^{\circ}C$ to $125^{\circ}C$		2		µV/°C
PSRR	Power Supply Rejection Ratio	$V_{\rm S}$ = ±2.25 V to ±18 V, V _{CM} = 0 V, V _{DM} = 0 V	90	120		dB
Input	L					
		Differential mode		1600		kΩ
	Impedance	Commom mode		400		kΩ
		Differential mode	-13.5		13.5	V
	Voltage Range	Common mode, HTOL test	-200		200	V
		V_{CM} = ±275 V, production Test	80	90		dB
		V_{CM} = ±275 V, production Test, T _J = -40°C to 125°C	78			dB
CMRR	Common-Mode Rejection Ratio	V _{CM} = 0 V to 60 V, TPA9151	80	95		dB
		V _{CM} = 0 V to 60 V, TPA9151A	90	96		dB
		V _{CM} = -30 V to 40 V, TPA9151B	96			dB
Output						
	Output Swing from Sunnhy Doll	R_L = 10 k Ω to V _S / 2		50	200	mV
	Output Swing from Supply Rail	R_L = 2 k Ω to V_S / 2		400	500	mV
Isc	Output Short-Circuit Current			100		mA

TPA9151/TPA9152

275-V Common Voltage Difference Amplifier

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
AC Spec	AC Specifications					
GBW	Gain-Bandwidth Product			500		kHz
SR	Slew Rate	10-V step		10		V/µs

Typical Performance Characteristics

All test conditions: V_S = 30 V, T_A = +25°C, unless otherwise noted.

Detailed Description

Overview

The TPA9151 and TPA9152 integrate on-chip matching resistors with high-precision amplifiers to achieve excellent gain accuracy, linearity, and CMRR over the operating temperature range. The resistors also extend the input signal range beyond the power supply rail.

Functional Block Diagram

Figure 3. Functional Block Diagram

(1)

275-V Common Voltage Difference Amplifier

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

Transfer Function

The complete transfer function of the TPA9151 is given in Equation 1.

 $V_{OUT} = (+IN) - (-IN) + 20 \times REF_A - 19 \times REF_B$

Usually, REF_A and REF_B are tied to the same voltage level, and recorded as REF, so the transfer function is Equation 2. REF_A and REF_B are tied to pin 1 internally in the TPA9152.

$$V_{OUT} = (+IN) - (-IN) + REF$$
⁽²⁾

Basic Connections

Figure 4 shows the basic connections for dual-supply operation. Figure 5 shows the basic connections for single-supply operation. 0.1-µF decoupling capacitors are recommended to be placed close to the power supply pins of the device.

Figure 4. Dual-Supply Operation Connections

Figure 5. Single-Supply Operation Connections

Common-Mode Input Range

The high common-mode range of the device is achieved by dividing up the input signal with the resistor divider. This resistor divider brings both the positive input (+IN) and the negative input (-IN) within the input range of the internal operational amplifier. V_A and V_B are the inputs of the internal operational amplifier in Figure 5, which can be calculated by the voltage at the (-IN), (+IN), REFA, REFB, (+V_S), and (-V_S) pins when the device works in the close loop. V_A and V_B can swing to the negative power rail and 1.5 V less than positive power rail, so the common-mode input range at the (+IN) input can be calculated by Equation 3.

$$V_{CM} = (800 + 38) / 38 \times (V_A \text{ or } V_B) - 800 / 38 \times \text{REF}_A \cong 22 \times (V_A \text{ or } V_B) - 21 \times \text{REF}_A$$
 (3)

Some calculated cases are shown in Table 3, and please note that the voltage range from +275 V to -275 V is guaranteed by the production test, and that the voltage range from +200 V to -200 V is guaranteed by the HTOL test.

1.1/	N	DEE	V _A c	or V _B	Va	см
+Vs	–Vs	REFA	Min	Мах	Min	Max
15	-15	0	-15	13.5	-330	297
30	0	15	0	28.5	-315	312
10	-10	0	-10	8.5	-220	187
10	0	5	0	8.5	-105	82

Table 3. Common Voltage Range with Different Supply Voltage and Reference Voltage

Differential Input Range

When the voltage at the (+IN) pin is within the range calculated by Equation 3, the voltage at the (-IN) pin can be determined by V_{OUT} , REF_A, and REF_B from Equation 4 which is derived from Equation 2. V_{OUT} must be kept in the output range of the internal amplifier. V_{OUT} can reach negative and positive power rails.

$$(-IN) = (+IN) - V_{OUT} + REF$$

(4)

Typical Application

Figure 6 shows the typical application schematic.

TPA9151/TPA9152

275-V Common Voltage Difference Amplifier

Tape and Reel Information

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
P0 A0 B0 W0 W0 W0 W0 W0 W0 W0 W0 W0 W	KO

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm) ⁽¹⁾	B0 (mm) ⁽¹⁾	K0 (mm) ⁽¹⁾	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPA9151A-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1
TPA9151B-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1
TPA9151-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1
TPA9152-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1

(1) The value is for reference only. Contact the 3PEAK factory for more information.

Package Outline Dimensions

SOP8

Order Information

Order Number	Operating Temperature Range	Package	Marking Information	MSL	Transport Media, Quantity	Eco Plan
TPA9151-SO1R	−40 to 125°C	SOP8	A9151	3	Tape and Reel, 4000	Green
TPA9151A-SO1R	−40 to 125°C	SOP8	A9151	3	Tape and Reel, 4000	Green
TPA9151B-SO1R	−40 to 125°C	SOP8	A9151	3	Tape and Reel, 4000	Green
TPA9152-SO1R	−40 to 125°C	SOP8	A9152	3	Tape and Reel, 4000	Green

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.