

Features

- · Ultra-Low Input Bias Current:
 - ±100 fA (Max) at T_A = 25°C (Lab Test Limit)
 - ±800 fA (Max) at -40° C < T_A < +125 $^{\circ}$ C (Lab Test Limit)
- Low Input Offset Voltage: ±150 μV (Max)
- Integrated Guard Buffer with 120-µV Maximum Offset
- Low Voltage Noise Density: 18 nV/√Hz at 1 kHz
- Wide Bandwidth: 2.1 MHz
- Supply Voltage: 4.5 V to 16 V (±2.25 V to ±8 V)
- Rail-to-Rail Output Swing
- ESD Rating: Robust 3-kV HBM, 1.5-kV CDM

Applications

- Photodiode Sensor Interface
- · Industrial Sensors and Instrumentation
- A.T.E. Leakage Testing

Description

The TPA3530 operational amplifier features a femtoampere-level input bias current. It operates from 4.5 V to 16 V (±2.25 V to ±8 V), and features rail-to-rail output swing in addition to an input common-mode range that includes ground. The integrated guard buffer isolates the input pins from leakage in the printed circuit board. It minimizes board component counts and enables easy system design.

The TPA3530 is ideal for portable medical and industrial applications that require low-bias current analog front-end performance, such as photodiode trans-impedance and chemical sensor interface circuits.

The TPA3530 is available in the SOP8 package, and is specified over the industrial temperature range from -40°C to +125°C. The unique pinout is optimized to prevent signals from coupling among the sensitive input pins, power supplies, and output pins while enabling easy routing of the guard ring traces.

Typical Application Circuit

Trans-Impedance Amplifier with Photodiode

www.3peak.com 1 / 20 AA20220901A1

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Circuit	1
Product Family Table	3
Revision History	3
Pin Configuration and Functions	4
Specifications	5
Absolute Maximum Ratings ⁽¹⁾	5
ESD, Electrostatic Discharge Protection	5
Recommended Operating Conditions	5
Thermal Information	5
Electrical Characteristics	6
Electrical Characteristics (Continued)	8
Typical Performance Characteristics	10
Detailed Description	12
Overview	12
Functional Block Diagram	12
Feature Description	12
Application and Implementation	13
Application Information	13
Typical Application	13
Layout	15
Layout Guideline	15
Layout Example	15
Tape and Reel Information	16
Package Outline Dimensions	17
SOP8	17
Order Information	18
IMPORTANT NOTICE AND DISCLAIMER	10

Product Family Table

Order Number	Package	Mark Information	MSL	Transport Media, Quantity
TPA3530-SO1R	SOP8	A3530	2	Tape and Reel, 4000

Revision History

Date	Revision	Notes
2022-09-10	Rev.Pre.0	Pre-released version.
2023-05-15	Rev.A.0	Initial release.
2024-12-18	Rev.A.1	The following updates are all about the new datasheet formats or typos, and the actual product remains unchanged. • Updated the Tape and Reel Information.

www.3peak.com 3 / 20 AA20220901A1

Pin Configuration and Functions

Table 1. Pin Functions: TPA3530

Pin	Nama	1/0	Description
SOP8	Name	I/O	Description
1	+IN	I	Non-inverting input.
2	GRD	0	Guard.
3	NC	_	No internal connection.
4	-Vs	_	Negative power supply.
5	+V _S	_	Positive power supply.
6	OUT	0	Output.
7	GRD	0	Guard.
8	-IN	Ī	Inverting input.

www.3peak.com 4 / 20 AA20220901A1

Specifications

Absolute Maximum Ratings (1)

	Parameter	Min	Max	Unit
Supply Voltage	(+V _S) - (-V _S)		17	V
Cianal Innut Dina (2)	Voltage	(-V _S) - 0.3	(+V _S) + 0.3	V
Signal Input Pins (2)	Current	-10	10	mA
Differential Input Voltage	Differential (V _{+IN} - V _{-IN})	-7	7	V
Output Short Current	Short Circuit to Ground	Indefinite		
T _A	Operating Temperature Range	-40	125	°C
TJ	Junction Temperature Range		150	°C
T _{stg}	Storage Temperature Range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum Level	Unit
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001 (1)	3	kV
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002 (2)	1.5	kV

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

	Parameter	Min	Тур	Max	Unit
Vs	Supply Voltage	4.5 (±2.25)		16 (±8)	V
V _{IN}	Signal Input Pins	-Vs		(+V _S) – 1.5	V
T _A	Operating Ambient Temperature	-40		125	°C

Thermal Information

Package Type	θ _{JA}	θυς	Unit
SOP8	158	43	°C/W

www.3peak.com 5 / 20 AA20220901A1

⁽²⁾ The input pins are diode-clamped to the power-supply rails. The input signal current that can swing more than 0.3 V beyond the supply rails must be limited to 10 mA or less.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Electrical Characteristics

All test conditions: $V_S = (+V_S) - (-V_S) = 4.5 \text{ V}$, $T = 25^{\circ}\text{C}$, $V_{CM} = V_S / 2$, $R_L = 10 \text{ K}\Omega$, $C_L = 10 \text{ pF}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Power Su	pply			-	·	
	Out and the second of the seco	I _{OUT} = 0 mA		0.9	1.4	0
IQ	Quiescent Current per Amplifier	-40°C < T _A < +125°C			1.5	mA
DODD	Dower Cumply Dejection Datio	V _S = 4.5 V to 16 V	115	127		dB
PSRR	Power Supply Rejection Ratio	-40°C < T _A < +125°C	110			ив
Input Cha	racteristics					
		RH < 50%	-100		100	
I _B ⁽¹⁾	Input Bias Current	-40°C < T _A < +80°C, RH < 50%	-300		300	fA
IB · ·	input Bias Guiterit	-40°C < T _A < +125°C, RH < 50%	-800		800	,,,
		RH < 50%	-50		50	
los ⁽¹⁾	Input Offset Current	-40°C < T _A < +125°C, RH < 50%	-200		200	fA
	Input Offset Voltage	V _{CM} = 0 V to 1.5 V	-100		100	μV
V		V _{CM} = 1.5 V to 3 V	-150		150	
Vos		V _{CM} = 0 V to 3 V, -40°C < T _A < 125°C	-600		600	
Vos TC	Input Offset Voltage Drift	-40°C < T _A < 125°C		2		μV/°C
V _{CM}	Input Common-Mode Voltage		0		3	V
		V _{CM} = 1.5 V to 3 V	92			
CMRR	Common-Mode Rejection Ratio	V _{CM} = 1.5 V to 3 V, -40°C < T _A < +125°C	90			dB
		V _{CM} = 0 V to 3 V	75			-
A _{OL}	Open-Loop Gain	R_L = 2 k Ω to V_{CM} , V_{OUT} = 0.2 V to 4.3 V	122			dB
		-40°C < T _A < +125°C	120			-
R _{IN}	Input Resistance	-40°C < T _A < +125°C		>100		ΤΩ
C _{IN}	Input Capacitance			10		pF
Output Cl	naracteristics					
V	Outro A Voltage Library	R_L = 10 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < +125 $^{\circ}C$	4.46			V
V _{OH}	Output Voltage High	R_L = 2 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < $+125^{\circ}C$	4.38			V
VoL	Output Voltage Low	R_L = 10 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < +125 $^{\circ}C$			40	mV

www.3peak.com 6 / 20 AA20220901A1

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		R_L = 2 k Ω to V_{CM} , -40° C < T_A < $+125^{\circ}$ C			120		
	Chart Circuit Current	Source current		31		m A	
I _{SC}	Short-Circuit Current	Sink current		19		mA	
AC Electri	AC Electrical Characteristics						
GBW	Gain Bandwidth			2.1		MHz	
SR	Slew Rate			1.4		V/µs	
V _N	Input Voltage-Noise Density	f = 1 kHz		18		nV/√Hz	
V _{NP-P}	Input Voltage Noise	f = 0.1 Hz to 10 Hz		4		μV _{P-P}	
CLOAD	Capacitive Loading	No sustained oscillations		100		pF	
Guard But	Guard Buffer						
V _{GOS}	Guard Offset Voltage	V _{SUPPLY} = 5 V, V _{CM} = V _{SUPPLY} / 2	-120		120	μV	

⁽¹⁾ Guaranteed by design. +IN and -IN are internally connected to the gates of the CMOS transistors. CMOS GATE leakage is so small that it is impractical to test in production. Devices are screened during production testing to eliminate defective units.

www.3peak.com 7 / 20 AA20220901A1

Electrical Characteristics (Continued)

All test conditions: V_S = (+ V_S) – (- V_S) = 16 V, T = 25°C, V_{CM} = V_S / 2, R_L = 10 K Ω , C_L = 10 pF, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Power Su	pply					
	Out and the second of the seco	I _{OUT} = 0 mA		0.9	1.4	A
Iq	Quiescent Current per Amplifier	-40°C < T _A < +125°C			1.5	mA
DCDD	Dower Cumply Dejection Datio	V _S = 4.5 V to 16 V	115	127		dB
PSRR	Power Supply Rejection Ratio	-40°C < T _A < +125°C	110			ив
Input Cha	racteristics					
		RH < 50%	-100		100	
I _B ⁽¹⁾	Input Bias Current	-40°C < T _A < +80°C, RH < 50%	-300		300	fA
IB ·	input Bias Guiterit	-40°C < T _A < +125°C, RH < 50%	-800		800	,,,
		RH < 50%	-50		50	
los ⁽¹⁾	Input Offset Current	-40°C < T _A < +125°C, RH < 50%	-200		200	fA
	Input Offset Voltage	V _{CM} = 0 V to 1.5 V	-100		100	μV
Vos		V _{CM} = 1.5 V to 14.5 V	-150		150	
VOS		V _{CM} = 0 V to 14.5 V, -40°C < T _A < 125°C	-600		600	
Vos TC	Input Offset Voltage Drift	-40°C < T _A < 125°C		2		μV/°C
V_{CM}	Input Common-Mode Voltage		0		14.5	V
		V _{CM} = 1.5 V to 14.5 V	107			
CMRR	Common-Mode Rejection Ratio	V _{CM} = 1.5 V to 14.5 V, -40°C < T _A < +125°C	105			dB
		V _{CM} = 0 V to 14.5 V	95			
A _{OL}	Open-Loop Gain	R_L = 2 k Ω to V_{CM} , V_{OUT} = 0.2 V to 4.3 V	127			dB
		-40°C < T _A < +125°C	125			
R _{IN}	Input Resistance	-40°C < T _A < +125°C		>100		ΤΩ
C _{IN}	Input Capacitance			10		pF
Output Ch	naracteristics					
V	Output Voltage High	R_L = 10 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < +125 $^{\circ}C$	15.9			V
V _{OH}	Output Voltage High	R_L = 2 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < $+125^{\circ}C$	15.58			V
VoL	Output Voltage Low	R_L = 10 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < +125 $^{\circ}C$			100	mV

www.3peak.com 8 / 20 AA20220901A1

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
		R_L = 2 k Ω to V_{CM} , $-40^{\circ}C$ < T_A < $+125^{\circ}C$			420		
	Chart Circuit Current	Source current		33		m 1	
I _{SC}	Short-Circuit Current	Sink current		21		mA	
AC Electri	AC Electrical Characteristics						
GBW	Gain Bandwidth			2.1		MHz	
SR	Slew Rate			1.4		V/µs	
V _N	Input Voltage-Noise Density	f = 1 kHz		18		nV/√Hz	
V _{NP-P}	Input Voltage Noise	f = 0.1 Hz to 10 Hz		4		µV _{P-P}	
CLOAD	Capacitive Loading	No sustained oscillations		100		pF	
Guard But	Guard Buffer						
V _{GOS}	Guard Offset Voltage	V _{SUPPLY} = 5 V, V _{CM} = V _{SUPPLY} / 2	-120		120	μV	

⁽¹⁾ Guaranteed by design. +IN and -IN are internally connected to the gates of the CMOS transistors. CMOS GATE leakage is so small that it is impractical to test in production. Devices are screened during production testing to eliminate defective units.

www.3peak.com 9 / 20 AA20220901A1

Typical Performance Characteristics

All test conditions: $V_S = (+V_S) - (-V_S) = 4.5 \text{ V}$, $T = 25^{\circ}\text{C}$, $V_{CM} = V_S / 2$, $R_L = 10 \text{ k}\Omega$, $C_L = 10 \text{ pF}$, unless otherwise noted.

www.3peak.com 10 / 20 AA20220901A1

Frequency

Detailed Description

Overview

The TPA3530 can interface with small signals from either current sources or high-output impedance voltage sources. Applications include photodiode pulse oximeters, pH sensors, capacitive pressure sensors, chemical analysis equipment, smoke detectors, and humidity sensors. The TPA3530 features a combination of low-input current, rail-to-rail output voltage swing, wide-supply voltage range, and low-power operation.

Functional Block Diagram

Figure 13. Functional Block Diagram

Feature Description

Input Bias and Guard Buffer

The TPA3530 features a MOS-input stage with only 100 fA (max) of input bias current. The unique input diode structure provides ESD protection, and allows the diodes to be guarded to minimize leakage currents at the input pins. The TPA3530 integrates a precision buffer that guards internal ESD diode leakage paths. The buffer input is connected to the non-inverting input (+IN) which is approximately equal to the input common-mode voltage when the main amplifier feedback loop is settled.

The output of this guard buffer is also connected to external pins (GRD), allowing users to guard external components against leakage currents. The input bias current is determined by the accuracy of the guard voltage applied across the ESD diodes.

Input Common-Mode Voltage

The TPA3530 is a rail-to-rail output amplifier with an input voltage range from $(-V_s)$ to $(+V_s) - 1.5$ V. The input guard buffer supports rail-to-rail output that allows the guard voltage to swing within 100 mV of the supply rails. Because the guard buffer output follows the input common-mode voltage, this output range limits the effectiveness of the guard buffer at low-input common-mode voltages. For this reason, it is not recommended to operate the circuit with an input common-mode voltage of less than 100 mV from the $-V_s$ supply rail.

Rail-to-Rail Output Stage

The TPA3530 output stage swings to within 30 mV (typ) of either power-supply rail with a 100-k Ω load, and provides a 2.1-MHz GBW with a 1.4-V/ μ s slew rate. The device is also unity-gain stable.

www.3peak.com 12 / 20 AA20220901A1

Application and Implementation

Note

Information in the following application sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPA3530 is a single CMOS operational amplifier with femtoampere input bias current and ultra-low offset voltage. It is suited for a wide variety of current output transducers (such as photodiodes and photomultiplier tubes), spectrometry, chromatography, and high-impedance buffering for chemical sensors.

Power Supply

The TPA3530 operates from +4.5 V to +16 V (± 2.25 V to ± 8 V). Bypass the power-supply inputs, $+V_S$ and $-V_S$, to a quiet copper ground plane, with a 0.1- μ F IC capacitor in parallel with a 4.7- μ F electrolytic capacitor, placed close to the pins.

High-Impedance Sensor Front Ends

The TPA3530 interfaces include photodiodes and potentiostat sensors, and high-impedance voltage sources, such as pH sensors. It is designed to maximize the performance of high-impedance circuits.

Typical Application

Figure 14 shows the TPA3530 configured in a trans-impedance amplifier interfacing with a photodiode.

Figure 14. Trans-Impedance Amplifier with Photodiode

TIA Application Recommendations

It is essential to take into account various noise sources. Op amp noise voltage, feedback resistor thermal noise, input noise current, and photodiode noise current do not operate across the same frequency range when analyzing the noise at the output of the TIA. The op amp noise voltage is gained up within the range between the noise gain zero and its pole. The higher the values of RF and C_{IN} are (C_{IN} is the total capacitance at the inverting terminal of the op amp, including the photodiode capacitance and input capacitance), the sooner the noise gain peaking starts, and the larger its contribution to

www.3peak.com 13 / 20 AA20220901A1

the total output noise is. An equivalent total-noise voltage is calculated by taking the square root of the sum of squared contributing noise voltages at the output of TIA.

www.3peak.com 14 / 20 AA20220901A1

Layout

Layout Guideline

A good layout is critical to obtaining high performance especially when interfacing with high-impedance sensors. Use shielding techniques to guard against parasitic leakage paths. The goal of guarding is to completely surround the insulation of the high-impedance node with another conductor that is driven to the guard voltage. The guard rail isolates sensitive nodes, such as the inverting input and the traces connecting to it, from varying or large-voltage differentials that otherwise occur in the rest of the circuit board. This reduces leakage and noise effects, allowing accurate sensitive measurements.

Be careful when decreasing the amount of stray capacitance at the inputs of op amp to improve stability. To achieve this, minimize trace lengths and resistor leads by placing external components as close as possible to the package. If the sensor is inherently capacitive or is connected to the amplifier through a long cable, use a low-value feedback capacitor to control high-frequency gain and peaking to stabilize the feedback loop.

Layout Example

Figure 15 shows the implementation of a guard ring in the TIA circuit. The guard ring shape is extended around these passive components to ensure that the entire high-impedance node is surrounded by guard. The guard ring is directly driven from the internal guard buffer.

Figure 15. TIA Circuit Layout

www.3peak.com 15 / 20 AA20220901A1

Tape and Reel Information

Order Number	Package	D1 (mm)	W1 (mm)	A0 (mm) ⁽¹⁾	B0 (mm) ⁽¹⁾	K0 (mm) ⁽¹⁾	P0 (mm)	W0 (mm)	Pin1 Quadrant
TPA3530-SO1R	SOP8	330	17.6	6.5	5.4	2	8	12	Q1

(1) The value is for reference only. Contact the 3PEAK factory for more information.

www.3peak.com 16 / 20 AA20220901A1

Package Outline Dimensions

SOP8

Order Information

Order Number	Operating Temperature Package		Marking Information	MSL	Transport Media, Quantity	Eco Plan	
TPA3530-SO1R	−40 to 125°C	SOP8	A3530	2	Tape and Reel, 4000	Green	

Green: 3PEAK defines "Green" to mean RoHS compatible and free of halogen substances.

www.3peak.com 18 / 20 AA20220901A1

IMPORTANT NOTICE AND DISCLAIMER

Copyright[©] 3PEAK 2012-2024. All rights reserved.

Trademarks. Any of the 思瑞浦 or 3PEAK trade names, trademarks, graphic marks, and domain names contained in this document /material are the property of 3PEAK. You may NOT reproduce, modify, publish, transmit or distribute any Trademark without the prior written consent of 3PEAK.

Performance Information. Performance tests or performance range contained in this document/material are either results of design simulation or actual tests conducted under designated testing environment. Any variation in testing environment or simulation environment, including but not limited to testing method, testing process or testing temperature, may affect actual performance of the product.

Disclaimer. 3PEAK provides technical and reliability data (including data sheets), design resources (including reference designs), application or other design recommendations, networking tools, security information and other resources "As Is". 3PEAK makes no warranty as to the absence of defects, and makes no warranties of any kind, express or implied, including without limitation, implied warranties as to merchantability, fitness for a particular purpose or non-infringement of any third-party's intellectual property rights. Unless otherwise specified in writing, products supplied by 3PEAK are not designed to be used in any life-threatening scenarios, including critical medical applications, automotive safety-critical systems, aviation, aerospace, or any situations where failure could result in bodily harm, loss of life, or significant property damage. 3PEAK disclaims all liability for any such unauthorized use.

www.3peak.com 19 / 20 AA20220901A1

This page intentionally left blank

www.3peak.com 20 / 20 AA20220901A1